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Introduction

A linear program (LP) is written

minimize cTx
subject to Ax = b

x ≥ 0

where x ≥ 0 means that the coefficients of the vector x are nonnegative.

� Starts with Dantzig’s simplex algorithm in the late 40s.

� First proofs of polynomial complexity by Nemirovskii and Yudin [1979] and
Khachiyan [1979] using the ellipsoid method.

� First efficient algorithm with polynomial complexity derived by Karmarkar
[1984], using interior point methods.
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Introduction

A semidefinite program (SDP) is written

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m

X � 0

where X � 0 means that the matrix variable X ∈ Sn is positive semidefinite.

� Nesterov and Nemirovskii [1994] showed that the interior point algorithms
used for linear programs could be extended to semidefinite programs.

� Key result: self-concordance analysis of Newton’s method (affine invariant
smoothness bounds on the Hessian).
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Introduction

� Modeling

◦ Linear programming started as a toy problem in the 40s, many applications
followed.

◦ Semidefinite programming has much stronger expressive power, many new
applications being investigated today (cf. this talk).

◦ Similar conic duality theory.

� Algorithms

◦ Robust solvers for solving large-scale linear programs are available today
(e.g. MOSEK, CPLEX, GLPK).

◦ Not (yet) true for semidefinite programs. Very active work now on first-order
methods, motivated by applications in statistical learning (matrix
completion, NETFLIX, structured MLE, . . . ).
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Semidefinite Programming
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Semidefinite programming: conic duality

Direct extension of LP duality results. Start from a semidefinite program

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m

X � 0

which is a convex minimization problem in X ∈ Sn. The cone of positive
semidefinite matrices is self-dual, i.e.

Z � 0 ⇐⇒ Tr(ZX) ≥ 0, for all X � 0,

so we can form the Lagrangian

L(X, y, Z) = Tr(CX) +

m∑
i=1

yi (bi −Tr(AiX))−Tr(ZX)

with Lagrange multipliers y ∈ Rm and Z ∈ Sn with Z � 0.
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Semidefinite programming: conic duality

Rearranging terms, we get

L(X, y, Z) = Tr (X (C −∑m
i=1 yiAi − Z)) + bTy

hence, after minimizing this affine function in X ∈ Sn, the dual can be written

maximize bTy
subject to Z = C −∑m

i=1 yiAi
Z � 0,

which is another semidefinite program in the variables y, Z. Of course, the last
two constraints can be simplified to

C −
m∑
i=1

yiAi � 0.
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Semidefinite programming: conic duality

� Primal dual pair

minimize Tr(CX)
subject to Tr(AiX) = bi

X � 0,

maximize bTy
subject to C −∑m

i=1 yiAi � 0.

� Simple constraint qualification conditions guarantee strong duality.

� We can write a conic version of the KKT optimality conditions
C −∑m

i=1 yiAi = Z,
Tr(AiX) = bi, i = 1, . . . ,m,
Tr(XZ) = 0,

X, Z � 0.
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Semidefinite programming: conic duality

So what?

� Weak duality produces simple bounds on e.g. combinatorial problems.

� Consider the MAXCUT relaxation

max. xTCx
s.t. x2i = 1 is bounded by

max. Tr(XC)
s.t. diag(X) = 1

X � 0,

in the variables x ∈ Rn and X ∈ Sn (more later on these relaxations).

� The dual of the SDP on the right is written

min
y

nλmax(C − diag(y)) + 1Ty

in the variable y ∈ Rn.

� By weak duality, plugging any value y in this problem will produce an upper
bound on the optimal value of the combinatorial problem above.
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Semidefinite programming: algorithms

Algorithms for semidefinite programming

� Following [Nesterov and Nemirovskii, 1994], most of the attention was focused
on interior point methods.

� Newton’s method, with efficient linear algebra solving for the search direction.

� Fast, and robust on small problems (n ∼ 500).

� Computing the Hessian is too hard on larger problems.

Solvers

� Open source solvers: SDPT3, SEDUMI, SDPA, CSDP, . . .

� Very powerful modeling systems: CVX
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Semidefinite programming: CVX

Solving the maxcut relaxation

max. Tr(XC)
s.t. diag(X) = 1

X � 0,

is written as follows in CVX/MATLAB

cvx begin

. variable X(n,n) symmetric

. maximize trace(C*X)

. subject to

. diag(X)==1

. X==semidefinite(n)

cvx end
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Semidefinite programming: large-scale

Solving large-scale problems is a bit more problematic. . .

� No universal algorithm known yet. No CVX like modeling system.

� Performance and algorithmic choices heavily depends on problem structure.

� Very basic codes only require computing one leading eigenvalue per iteration,
with complexity O(n2 log n) using e.g. Lanczos.

� Each iteration requires about 300 matrix vector products, but making progress
may require many iterations. Typically O(1/ε2) or O(1/ε) in some cases.

� In general, most optimization algorithms are purely sequential, so only the
linear algebra subproblems benefit from the multiplication of CPU cores.
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Applications

� Many classical problems can be cast as or approximated by semidefinite
programs.

� Recognizing this is not always obvious.

� At reasonable scales, numerical solutions often significantly improve on
classical closed-form bounds.

� A few examples follow. . .
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Eigenvalue problems
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Eigenvalue problems

Start from a semidefinite program with constant trace

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m

Tr(X) = 1
X � 0

in the variable X ∈ Sn. Because

max
Tr(X)=1,
X�0

Tr(CX) = λmax(C),

the dual semidefinite program is written

min
y

λmax

(
C −

m∑
i=1

yi

)
+ bTy

in the variable y ∈ Rm.

Maximum eigenvalue minimization problems are usually easier to solve using
first-order methods.

A. d’Aspremont. M1 ENS. 17/45



Combinatorial relaxations
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Combinatorial relaxations

[Goemans and Williamson, 1995, Nesterov, 1998]

Semidefinite programs with constant trace often arise in convex relaxations of
combinatorial problems. Use MAXCUT as an example here.

The problem is written
max. xTCx
s.t. x ∈ {−1, 1}n

in the binary variables x ∈ {−1, 1}n, with parameter C ∈ Sn (usually C � 0).
This problem is known to be NP-Hard. Using

x ∈ {−1, 1}n ⇐⇒ x2i = 1, i = 1, . . . , n

we get
max. xTCx
s.t. x2i = 1, i = 1, . . . , n

which is a nonconvex quadratic program in the variable x ∈ Rn.
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Combinatorial relaxations

We now do a simple change of variables, setting X = xxT , with

X = xxT ⇐⇒ X ∈ Sn, X � 0, Rank(X) = 1

and we also get

Tr(CX) = xTCx

diag(X) = 1 ⇐⇒ x2i = 1, i = 1, . . . , n

so the original combinatorial problem is equivalent to

max. Tr(CX)
s.t. diag(X) = 1

X � 0, Rank(X) = 1

which is now a nonconvex problem in X ∈ Sn.
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Combinatorial relaxations

� If we simply drop the rank constraint, we get the following relaxation

max. xTCx
s.t. x ∈ {−1, 1}n is bounded by

max. Tr(CX)
s.t. diag(X) = 1

X � 0,

which is a semidefinite program in X ∈ Sn.

� Rank constraints in semidefinite programs are usually hard. All semi-algebraic
optimization problems can be formulated as rank constrained SDPs.

� Randomization techniques produce bounds on the approximation ratio. When
C � 0 for example, we have

2

π
SDP ≤ OPT ≤ SDP

for the MAXCUT relaxation (more details in [Ben-Tal and Nemirovski, 2001]).

� Applications in graph, matrix approximations (CUT-Norm, ‖ · ‖1→2) [Frieze
and Kannan, 1999, Alon and Naor, 2004, Nemirovski, 2005]
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Ellipsoidal approximations
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Ellipsoidal approximations

Minimum volume ellipsoid E s.t. C ⊆ E (Löwner-John ellipsoid).

� parametrize E as E = {v | ‖Av + b‖2 ≤ 1} with A � 0.

� vol E is proportional to detA−1; to compute minimum volume ellipsoid,

minimize (over A, b) log detA−1

subject to supv∈C ‖Av + b‖2 ≤ 1

convex, but the constraint can be hard (for general sets C).

Finite set C = {x1, . . . , xm}, or polytope with polynomial number of vertices:

minimize (over A, b) log detA−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron Co{x1, . . . , xm}
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Ellipsoidal approximations

Maximum volume ellipsoid E inside a convex set C ⊆ Rn

� parametrize E as E = {Bu+ d | ‖u‖2 ≤ 1} with B � 0.

� vol E is proportional to detB, we can compute E by solving

maximize log detB
subject to sup‖u‖2≤1 IC(Bu+ d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) =∞ for x 6∈ C) again, this is a
convex problem, but evaluating the constraint can be hard (for general C)

Polyhedron given by its facets {x | aTi x ≤ bi, i = 1, . . . ,m}:

maximize log detB
subject to ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

(constraint follows from sup‖u‖2≤1 a
T
i (Bu+ d) = ‖Bai‖2 + aTi d)
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Ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

� Löwner-John ellipsoid, shrunk by a factor n, lies inside C

� maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√
n if C is symmetric. See [Boyd and Vandenberghe,

2004] for further examples.
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Distortion, embedding problems, . . .
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Distortion, embedding problems, . . .

We cannot hope to always get low rank solutions, unless we are willing to admit
some distortion. . . The following result from [Ben-Tal, Nemirovski, and Roos,
2003] gives some guarantees.

Theorem

Approximate S-lemma. Let A1, . . . , AN ∈ Sn, α1, . . . , αN ∈ R and a matrix
X ∈ Sn such that

Ai, X � 0, Tr(AiX) = αi, i = 1, . . . , N

Let ε > 0, there exists a matrix X0 such that

αi(1− ε) ≤ Tr(AiX0) ≤ αi(1 + ε) and Rank(X0) ≤ 8
log 4N

ε2

Proof. Randomization, concentration results on Gaussian quadratic forms.

See [Barvinok, 2002, Ben-Tal, El Ghaoui, and Nemirovski, 2009] for more details.
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Distortion, embedding problems, . . .

A particular case: Given N vectors vi ∈ Rd, construct their Gram matrix
X ∈ SN , with

X � 0, Xii − 2Xij +Xjj = ‖vi − vj‖22, i, j = 1, . . . , N.

The matrices Dij ∈ Sn such that

Tr(DijX) = Xii − 2Xij +Xjj, i, j = 1, . . . , N

satisfy Dij � 0. Let ε > 0, there exists a matrix X0 with

m = Rank(X0) ≤ 16
log 2N

ε2
,

from which we can extract vectors ui ∈ Rm such that

‖vi − vj‖22 (1− ε) ≤ ‖ui − uj‖22 ≤ ‖vi − vj‖22 (1 + ε).

In this setting, the Johnson-Lindenstrauss lemma is a particular case of the
approximate S lemma. . .
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Distortion, embedding problems, . . .

� The problem of reconstructing an N -point Euclidean metric, given partial
information on pairwise distances between points vi, i = 1, . . . , N can also be
cast as an SDP, known as and Euclidean Distance Matrix Completion
problem.

find D
subject to 1vT + v1T −D � 0

Dij = ‖vi − vj‖22, (i, j) ∈ S
v ≥ 0

in the variables D ∈ Sn and v ∈ Rn, on a subset S ⊂ [1, N ]2.

� We can add further constraints to this problem given additional structural info
on the configuration.

� Applications in sensor networks, molecular conformation reconstruction etc. . .
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Distortion, embedding problems, . . .

494 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

(a)

(b)

(c)

(d)

(f) (e)

Figure 140: Map of United States of America showing some state boundaries
and the Great Lakes. All plots made by connecting 5020 points. Any
difference in scale in (a) through (d) is artifact of plotting routine.
(a) Shows original map made from decimated (latitude, longitude) data.
(b) Original map data rotated (freehand) to highlight curvature of Earth.
(c) Map isometrically reconstructed from an EDM (from distance only).
(d) Same reconstructed map illustrating curvature.
(e)(f) Two views of one isotonic reconstruction (from comparative distance);
problem (1181) with no sort constraint Π d (and no hidden line removal).

[Dattorro, 2005] 3D map of the USA reconstructed from pairwise distances on
5000 points. Distances reconstructed from Latitude/Longitude data.
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Mixing rates for Markov chains
& maximum variance unfolding
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Mixing rates for Markov chains & unfolding

[Sun, Boyd, Xiao, and Diaconis, 2006]

� Let G = (V,E) be an undirected graph with n vertices and m edges.

� We define a Markov chain on this graph, and let wij ≥ 0 be the transition
rate for edge (i, j) ∈ V .

� Let π(t) be the state distribution at time t, its evolution is governed by the
heat equation

dπ(t) = −Lπ(t)dt
with

Lij =


−wij if i 6= j, (i, j) ∈ V
0 if (i, j) /∈ V∑

(i,k)∈V wik if i = j

the graph Laplacian matrix, which means

π(t) = e−Ltπ(0).

� The matrix L ∈ Sn satisfies L � 0 and its smallest eigenvalue is zero.
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Mixing rates for Markov chains & unfolding

� With
π(t) = e−Ltπ(0)

the mixing rate is controlled by the second smallest eigenvalue λ2(L).

� Since the smallest eigenvalue of L is zero, with eigenvector 1, we have

λ2(L) ≥ t ⇐⇒ L(w) � t(I− (1/n)11T ),

� Maximizing the mixing rate of the Markov chain means solving

maximize t
subject to L(w) � t(I− (1/n)11T )∑

(i,j)∈V d
2
ijwij ≤ 1

w ≥ 0

in the variable w ∈ Rm, with (normalization) parameters d2ij ≥ 0.

� Since L(w) is an affine function of the variable w ∈ Rm, this is a semidefinite
program in w ∈ Rm.

� Numerical solution usually performs better than Metropolis-Hastings.
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Mixing rates for Markov chains & unfolding

� We can also form the dual of the maximum MC mixing rate problem.

� The dual means solving

maximize Tr(X(I− (1/n)11T ))
subject to Xii − 2Xij +Xjj ≤ d2ij, (i, j) ∈ V

X � 0,

in the variable X ∈ Sn.

� Here too, we can interpret X as the gram matrix of a set of n vectors vi ∈ Rd.
The program above maximizes the variance of the vectors vi

Tr(X(I− (1/n)11T )) =
∑
i ‖vi‖22 − ‖

∑
i vi‖

2
2

while the constraints bound pairwise distances

Xii − 2Xij +Xjj ≤ d2ij ⇐⇒ ‖vi − vj‖22 ≤ d2ij

� This is a maximum variance unfolding problem [Weinberger and Saul, 2006,
Sun et al., 2006].
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Mixing rates for Markov chains & unfolding• similar to semidefinite embedding for unsupervised learning of
manifolds (Weinberger & Saul 2004)

• surprise: duality between fastest mixing Markov process and maximum
variance unfolding

ICM 2006 Madrid, August 29, 2006 46

From [Sun et al., 2006]: we are given pairwise 3D distances for k-nearest
neighbors in the point set on the right. We plot the maximum variance point set
satisfying these pairwise distance bounds on the right.
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Moment problems & positive polynomials
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Moment problems & positive polynomials

[Nesterov, 2000]. Hilbert’s 17th problem has a positive answer for univariate
polynomials: a polynomial is nonnegative iff it is a sum of squares

p(x) = x2d + α2d−1x
2d−1 + . . .+ α0 ≥ 0, for all x ⇐⇒ p(x) =

N∑
i=1

qi(x)
2

We can formulate this as a linear matrix inequality, let v(x) be the moment vector

v(x) = (1, x, . . . , xd)T

we have∑
i

λiuiu
T
i =M � 0 ⇐⇒ p(x) = v(x)TMv(x) =

∑
i

λi(u
T
i v(x))

2

where (λi, ui) are the eigenpairs of M .
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Moment problems & positive polynomials

� The dual to the cone of Sum-of-Squares polynomials is the cone of moment
matrices

Eµ[x
i] = qi, i = 0, . . . , d ⇐⇒


q0 q1 · · · qd
q1 q2 qd+1
... . . . ...
qd qd+1 · · · q2d

 � 0

� [Putinar, 1993, Lasserre, 2001, Parrilo, 2000] These results can be extended to
multivariate polynomial optimization problems over compact semi-algebraic
sets.

� This forms exponentially large, ill-conditioned semidefinite programs however.
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Collaborative prediction
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Collaborative prediction

� Users assign ratings to a certain number of movies:

U
se

rs

Movies

� Objective: make recommendations for other movies. . .
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Collaborative prediction

� Infer user preferences and movie features from user ratings.

� We use a linear prediction model:

ratingij = uTi vj

where ui represents user characteristics and vj movie features.

� This makes collaborative prediction a matrix factorization problem

� Overcomplete representation. . .
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Collaborative prediction

� Inputs: a matrix of ratings Mij = {−1,+1} for (i, j) ∈ S, where S is a subset
of all possible user/movies combinations.

� We look for a linear model by factorizing M ∈ Rn×m as:

M = UTV

where U ∈ Rn×k represents user characteristics and V ∈ Rk×m movie features.

� Parsimony. . . We want k to be as small as possible.

� Output: a matrix X ∈ Rn×m which is a low-rank approximation of the ratings
matrix M .
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Least-Squares

� Choose Means Squared Error as measure of discrepancy.

� Suppose S is the full set, our problem becomes:

min
{X: Rank(X)=k}

‖X −M‖2

� This is just a singular value decomposition (SVD). . .

Problem: Not true when S is not the full set (partial observations). Also, MSE
not a good measure of prediction performance. . .
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Soft Margin

minimize Rank(X) + c
∑

(i,j)∈S

max(0, 1−XijMij)

non-convex and numerically hard. . .

� Relaxation result in Fazel et al. [2001]: replace Rank(X) by its convex
envelope on the spectahedron to solve:

minimize ‖X‖∗ + c
∑

(i,j)∈S

max(0, 1−XijMij)

where ‖X‖∗ is the nuclear norm, i.e. sum of the singular values of X.

� Srebro [2004]: This relaxation also corresponds to multiple large margin SVM
classifications.
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Soft Margin

� The dual of this program:

maximize
∑
ij Yij

subject to ‖Y �M‖2 ≤ 1
0 ≤ Yij ≤ c

in the variable Y ∈ Rn×m, where Y �M is the Schur (componentwise)
product of Y and M and ‖Y ‖2 the largest singular value of Y .

� This problem is sparse: Y ∗ij = c for (i, j) ∈ Sc
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