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Today

Interior point methodes.

m Unconstrained minimization
m Barrier method

m Primal dual methods
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Unconstrained minimization
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Unconstrained minimization

m terminology and assumptions
m gradient descent method

m steepest descent method

s Newton’'s method

m self-concordant functions

m implementation
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Unconstrained minimization

minimize f(x)

= f convex, twice continuously differentiable (hence dom f open)

= we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

= produce sequence of points z(*) € dom f, k= 0,1, ... with

f(z®) — p*

m can be interpreted as iterative methods for solving optimality condition

Vflx*)=0
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Initial point and sublevel set

algorithms in this chapter require a starting point z(°) such that

s 29 € dom f
s sublevel set S = {z | f(z) < f(z(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

m equivalent to condition that epi f is closed
m true if dom f = R"

s true if f(z) > oo as * — bddom f

examples of differentiable functions with closed sublevel sets:

f(z) =log(}_explajz+b),  fl@) =) log(bi—ajw)

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications

m forx,y €5,
f) 2 @)+ V@) (g — ) + Sl =yl

hence, S is bounded

mp* > —00, and for z € S,

F(z) - p" < IV ()]

- 2m

useful as stopping criterion (if you know m)
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Descent methods

2D = o) WAL it FaD) < f(20)

m other notations: ™ =z + tAx, ¢ := x + tAx

m Ax is the step, or search direction; t is the step size, or step length

= from convexity, f(z%) < f(x) implies V f(z)T Az < 0
(i.e., Ax is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. z := x + tAx.

until stopping criterion is satisfied.
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Line search types

exact line search: ¢t = argmin,., f(x + tAz)

backtracking line search (with parameters a € (0,1/2), 8 € (0,1))

m starting at ¢t = 1, repeat t := St until

flz 4+ tAz) < f(z) + atVf(z) Az

m graphical interpretation: backtrack until ¢ < %

f(x + tAx)

M@ 4 V@A f@) V@) Ae
f | /
t=20 to
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point x € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := x4+ tAx.

until stopping criterion is satisfied.

= stopping criterion usually of the form ||V f(x)|2 <€

m convergence result: for strongly convex f,

f@®) —p* < F(f() - pY)

c € (0,1) depends on m, 2(9)| line search type

m very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flx) = (1/2)(x] + yz3) (v > 0)

with exact line search, starting at 2(9) = (v, 1):
k k
(hy _ (=1 ky _ (=1
Ly =TV 7 > Lo =\ ——77
v+1 v+1

m very slowif y>1orv <1

m example for v = 10:

4,
g 0
— 4t
—10 0 10
L1
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nonquadratic example

391—|—3£C2—0.1_|_6x1—3332—0.1_|_ —x1—0.1

flx1,20) =€ e

backtracking line search exact line search

A. d'Aspremont. M1 ENS. 12/103



a problem in R1%

f(z®) — p*

\ backtracking |.s.

0 50 100 150 200

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
Azyeq = argmin{V f(z) v | ||[v]| = 1}

interpretation: for small v, f(z +v) ~ f(z) + Vf(x)lv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Argg = [|[Vf(2)[|+ATnsq

satisfies V f(2)T Asa = — ||V f(2)||?

steepest descent method
m general descent method with Ax = Axyg

m convergence properties similar to gradient descent

A. d'Aspremont. M1 ENS. 14/103



examples

s Euclidean norm: Axzgq = —V f(x)
s quadratic norm ||z||p = (2T Px)Y/2 (P € S1.): Azgg = —P7 1V f(2)
m (1-norm: Axgq = —(0f(x)/0x;)e;, where |0f(x)/0x;| = |V f(2)|s0

unit balls and normalized steepest descent directions for a quadratic norm and the
¢1-norm:

—V f(x)

—Vf(z)

Ax
nsd Axnsd
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choice of norm for steepest descent

m steepest descent with backtracking line search for two quadratic norms
s ellipses show {z | ||z — 2¥)||p = 1}

m equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —V2f(x) 'V f(x)
interpretations

s x + Ax,, minimizes second order approximation

AN

Fla +v) = f(@) + VI @) 0+ 50"V f(x)o

m x + Ax, solves linearized optimality condition

AN

Vi@+v) = Vf(x+v)=Vf(r)+Vif(zr)o=0

AF Iz
(z, f()) 7 (x+ Az, (x4 Azyy))
e (.CC, f/(ZE))
( + Az, fz + Azy)) /
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m Aux, Is steepest descent direction at x in local Hessian norm

1/2
lullv2 @y = (u' V2 f(2)u)

dashed lines are contour lines of f; ellipse is {z + v | v V2 f(z)v = 1} arrow
shows —V f(x)
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Newton decrement

1/2

ANz) = (V)" V2 f(2)"'V f(a))
a measure of the proximity of x to x*

properties

*

m gives an estimate of f(x) — p*, using quadratic approximation f

N 1
f(@) = inf Fly) = SA @)’
m equal to the norm of the Newton step in the quadratic Hessian norm
M) = (A V2f (2) Azy)

= directional derivative in the Newton direction: Vf(z)l Az, = —\(x)?

= affine invariant (unlike |V f(x)]2)
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Newton’s method

given a starting point x € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Axy = —V2f(2)"IVf(x);, N :=Vf(x)IV2f(z) IV f(z).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x == x + tAxyy.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(Ty) with starting point y(© = 7120 are

Y8 = = 1(k)
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Classical convergence analysis

assumptions

m f strongly convex on S with constant m

s V27 is Lipschitz continuous on S, with constant L > 0:

IV f(z) = V2 f()ll2 < Lllz — y]2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants € (0,m?/L), v > 0 such that

o I [V (@)]l2 >, then f(z0+D) — f(at?) < —
n if [Vf(z)]l2 <n, then

L (k+1) L AN
VD) < (S V)]
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Classical convergence analysis

damped Newton phase (||Vf(z)|2 > n)

m most iterations require backtracking steps
m function value decreases by at least ~

m if p* > —o00, this phase ends after at most (f(x(?)) — p*) /~ iterations

quadratically convergent phase (||Vf(z)|2 < n)

m all iterations use step size t = 1

s [|[Vf(x)||2 converges to zero quadratically: if ||V f(2*))||2 < 1, then

2l—k

L L 1
ol VI < (5IVA@OIE) < (3) o 2k

2l—k

A. d'Aspremont. M1 ENS.

22/103



Classical convergence analysis

conclusion: number of iterations until f(x) — p* < € is bounded above by

f(z?) — p*

+ log, log,(€g/€)

m 7, €o are constants that depend on m, L, 2(%

= second term is small (of the order of 6) and almost constant for practical
purposes

= in practice, constants m, L (hence 7, ¢y) are usually unknown

= provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R? (page 12)

m backtracking parameters a = 0.1, 8 = 0.7

m converges in only 5 steps

m quadratic local convergence
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example in R1% (page 13)

10° 2
exact line search
« 10V 1.5
o -
| backtracki by
acktrackin o)
1070 ne N
2 wn
. o
) exact line search 9
wn .
om0 0.5 acktracking
—].5 I O |
10°7% 2 4 . 6 8 10 0 2 21.3 6 8

m backtracking parameters a = 0.01, 8 = 0.5
= backtracking line search almost as fast as exact |.s. (and much simpler)

m clearly shows two phases in algorithm
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example in R1%000 (with sparse a;)

10000 100000

Zlogl—x Zlog —al x)

m backtracking parameters a = 0.01, 5 = 0.5.

m performance similar as for small examples
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V2f(z), g = =V f(x)

via Cholesky factorization

H=LL",  Azy=LTL'g,  Xz)=|L g2

= cost (1/3)n? flops for unstructured system

m cost < (1/3)n? if H sparse, banded
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example of dense Newton system with structure
flz) = Z%(aﬁz) + o(Ax + b), H =D+ A"HyA
i=1

m assume A € RP*™ dense, with p < n

= D diagonal with diagonal elements 9! (x;); Hy = V?q(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2: factor Hy = LoL}’; write Newton system as
DAz + AT Low = —g, LEAAT —w =0
eliminate Ax from first equation; compute w and Ax from
(I+LEAD*ATLoyw = —LEAD g, DAz = —g— A'Lyw
cost: 2p*n (dominated by computation of LI AD 1 AL)
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Self-concordance

shortcomings of classical convergence analysis

= depends on unknown constants (m, L, ... )

m bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

m does not depend on any unknown constants
m gives affine-invariant bound
= applies to special class of convex functions (‘self-concordant’ functions)

m developed to analyze polynomial-time interior-point methods for convex
optimization
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Self-concordant functions

definition
m f:R — R is self-concordant if
‘f///(ﬂf)‘ < 2f”(37)3/2

for all x € dom f

s f:R"” — R is self-concordant if g(t) = f(x + tv) is self-concordant for all
r €dom f, v e R"

examples on R
m linear and quadratic functions
= negative logarithm f(xz) = —logx

= negative entropy plus negative logarithm: f(x) = xlogx — logx
affine invariance: if f : R — R is s.c., then f(y) = f(ay + b) is s.c.:

]’E///(y) _ a3f///(ay 4+ b), ]’E//(y) _ a2f”(ay + b)

A. d'Aspremont. M1 ENS. 30/103



Self-concordant calculus

properties

m preserved under positive scaling @ > 1, and sum
m preserved under composition with affine function

= if g is convex with domg =R, and |¢"'(z)| < 3¢"(x)/x then

f(x) =log(—g(x)) — logz

Is self-concordant

examples: properties can be used to show that the following are s.c.

s flx)=—>" log(b;—alz)on{z|alx <by i=1,...,m}
s f(X)=—logdet X on SJFJr

= f(z) = —log(y® — 2" x) on {(z,y) | =]z < y}
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Self-concordance: complexity analysis

Newton’s method for self-concordant functions.

Convergence proof:

m Affine invariant bounds on Hessian
m Newton decrement and bounds on suboptimality
m Damped Newton phase

= Quadratic Newton phase

We often only consider univariate functions to simplify analysis. . .
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Self-concordance: complexity analysis

Affine invariant bounds on the Hessian. Replace Lipschitz bounds and strong
convexity in classical analysis.

Lemma

Hessian bounds. Suppose f : R — R is a convex self-concordant function,
either f"(x) =0 for all x € dom f, or f"(x) > 0 for all z € dom f.

Proof. Suppose f(0) > 0, f(z) =0 for £ > 0, and f’(x) > 0 on the interval
between 0 and z. We have

()
f”(a:)3/2’

d 7 —1/2 __
—f"(2) 7 = (<1/2)

this means we can write the self-concordance inequality | f"/(x)| < 2f"(x)3/? for

all x € dom f as
A ONGIES (1)
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for all t € dom f. This holds for x between 0 and x. Integrating gives
f”(:f)_l/Q . f//(O)—l/Q <7z

which contradicts f(Z) = 0. =
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Self-concordance: complexity analysis

Hessian bounds. Suppose f : R — R is a strictly convex self-concordant
function. We have

1"(0) . 1"(0)
e S oy ?

The lower bound is valid for all nonnegative t € dom f, the upper bound is valid
ift € dom f and 0 <t < f"(0)~1/2.

Proof. Assuming t > 0 and the interval between 0 and ¢ is in dom f, we can
integrate (1) between 0 and ¢ to obtain

t
d
< 1"e_\N—1/2 <
—t /OdT(f (1) )d’i‘ t

i.e., —t < f"(t)71/2 — f(0)~1/2 < t. From this we obtain lower and upper
bounds on f”(¢). m
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Self-concordance: complexity analysis

Lemma

Newton Decrement. Let A\(x) be the Newton decrement

Mz) = (V@) V2 (z) V).

We have, for any nonzero v

— vV f(x)
TV )i = M) )

with equality for v = Axyy.

Proof. The Newton decrement can also be expressed as

TV
Me) = U T o) 72

using [lwll2 = supy,,—1 w’z, after setting y = (V2f(z))"/?v. =
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Self-concordance: complexity analysis

Bounds on suboptimality. Let f : R™ — R be a strictly convex self-concordant
function. We have

p* > fz) — A=) (4)
which is valid for \(x) < 0.68.

Proof. Let v be a descent direction (i.e., any direction satisfying v*'V f(z) <0,
not necessarily the Newton direction). Define f: R — R as f(t) = f(z + tv). By
definition, the function f is self-concordant.

Integrating the lower bound in (2) yields a lower bound on f(¢):

]F//(O)l/Q
1+ tf//(())l/Q'

f'(t) = f'(0) + f(0)"/2 — (5)
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Integrating again yields a lower bound on f(¢):

~

f(t) > £(0) +tf'(0) + tf"(0)"/% —log(1 4t f(0)'/?).

The righthand side reaches its minimum at

and evaluating at ¢ provides a lower bound on f:

~

inf f(t) = f(0)+Ef'(0) +£f"(0)/ — log(1 + £f"(0)"?)

~ ~

= f(0) = f/(0)f"(0)""/2 +log(1 + f'(0)f"(0)"1/%).

The inequality (3) can be expressed as

Mz) = —f'(0)f"(0)71/2
(with equality when v = Axyy), since we have

F0)=v"Vf(z),  f'(0)=0"Vf(2)v.
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Now using the fact that u + log(1 — u) is a monotonically decreasing function of

u, and the inequality above, we get

inf f(t) > £(0) + A(x) + log(1 = A()),

This inequality holds for any descent direction v. Therefore

p* = flz) + Ax) 4 log(1 — A(x))
provided A(x) < 1. The function — (A 4 log(1 — X)) satisfies

— (A +1log(l—N)) =~ \?/2,
for small A\, and the bound
— (A +log(1l— X)) < \?
for A < 0.68. Thus, we have the bound on suboptimality
p* > fz) — AMz)?,

valid for A\(z) < 0.68. =
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Self-concordance: complexity analysis

Newton’s method with backtracking line search. Assume,

m f strictly convex self-concordant function
= A starting point (9

» Sublevel set S = {z | f(z) < f(2(©)} is closed
= f is bounded below (has a minimizer).

We show that there are numbers 17 and v > 0, with 0 < n < 1/4, that depend
only on the line search parameters a and (3, such that

n If AM(z®)) > n, then
fa®H) = fa®) < —. (8)

s If AM(2®)) <1, then the backtracking line search selects t = 1 and

oA (z D)) < (QA(:E(k)))Q. (9)
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Self-concordance: complexity analysis

Damped phase Let f : R®™ — R be a strictly convex self-concordant function.
After one step of Newton’s method with backtracking line search

f(a?(k+1)) _ f(a:(k)) < _aﬁlz— . (10)

Proof. Let f(t) = f(x 4 tAzy;), so we have

~

If we integrate the upper bound in (2) twice, we obtain an upper bound for f(t):

f(t) < FO)+tf'(0) —tf"(0)% —log (1 _ tf//(o)l/z)
F(0) — tA(z)? — tA(z) — log(1 — tA(z)), (11)
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valid for 0 <t < 1/A(x).

We can use this bound to show the backtracking line search always results in a
step size t > 3/(1 + A(x)). To prove this we note that the point ¢ = 1/(1 + \(z))
satisfies the exit condition of the line search:

~

fd) < f(0) = iA(2)? — iA(z) — log(1 — EA(z))
f

< f(0)-oq i(i)(x)
= £(0) — aX(z)?.

The second inequality follows from the fact that

72
—x+log(1+x)+2(1+x) <0
for £ > 0. Since t > B/(1 4+ A(x)), we have
- - )2
) F(0) < —ap s
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Self-concordance: complexity analysis

Lemma

Newton decrement: quadratic phase Let f : R™ — R be a strictly convex self-
concordant function. Suppose \(x) < 1, and define x* = x — V2f(2)" 'V f(z),

then
A(z)?
(1= A(z))*

AMzT) <

Proof. Let v = —V?f(x) 'V f(x). From exercise 9.17, part (c), which
generalizes the affine lower and upper bounds on the Hessian, we have

1

(1= tA@) V(@) 2 V(@4 t0) = s

sV f(2).

We can assume without loss of generality that V2 f(x) = I (hence,
v=—-Vf(x)), so

2 2 1
(1= A@)’I 2 VS (0") X ryval
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and write A\(z1) as

Aa™) IV (@) V@)l

(1= A@) VTl

(1 — Az)) 2 (/01 V2f(x + tv)v dt + Vf(a;))

IA

2

= (1-\a)™? (/Ol(VQf(:r;thv)—I)dt)v

< a3 | () Gz - 04),
< ol =A@ [ (i~ D
O

(=A@

which is the desired result =
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Self-concordance: complexity analysis

Quadratic phase Let f : R™ — R be a strictly convex self-concordant function.
If \(z®)) < n, where n = (1 — 2a) /4, after each step of Newton's method with

backtracking line search

2

20(2*+D) < (22(™))

Proof. Picking n = (1 — 2«)/4 (which satisfies 0 <7 < 1/4, since 0 < a < 1/2),
i.e., if M(xz(®)) < (1 —2a)/4, we show that the backtracking line search accepts
the unit step and (9) holds.

Note that the upper bound (11) implies that a unit step ¢t = 1 yields a point in
dom f if A\(z) < 1.
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Moreover, if A(x) < (1 — 2a)/2, we have, using (11),

F) < F0) = M) = M) — log(1 — A2))
< F0) - M@+ M@
S ]E(O) o Oé)\(.’L‘)Q,

so the unit step satisfies the condition of sufficient decrease. (The second line
follows from the fact that —z — log(1 — ) < 22% + 23 for 0 < z < 0.81.)

The result follows from the previous lemma: If A\(z) < 1, and
ot =2 — V2f(z)"'Vf(x), then

- A@)? ")
In particular, if A(z) < 1/4,
Aa™) < 2X(2),

which proves that the result we seek holds when A(z(*)) < 7. u
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Convergence analysis for self-concordant functions

Summary. There exist constants n € (0,1/4], v > 0 such that

m if AM(z) > 7, then
FEHD) — f@®) < —

= if A(x) <, then
2
oA (z D) < <2A(x(k))>

(n and v only depend on backtracking parameters «, [3)

Complexity bound. Number of Newton iterations bounded by

f (%) —p*
v

+ log, log,(1/€)

for « = 0.1, 3 =0.8, e = 1071°, bound evaluates to 375(f(x(?) — p*) + 6.
Independent of the problem dimension!

A. d'Aspremont. M1 ENS. 47/103



numerical example: 150 randomly generated instances of

minimize f(x)

O: m = 100, n = 50

O: m = 1000, n = 500

<O m = 1000, n = 50

iterations

— > log(b; — a; x)

T T T T
25+ 00 QOO 0o o O

20¢r o @
® oo
OO O u]
el o Oeo
Q0 [o2Ne]
15} o o o
o om
0 ©
(o)
() v
10+ OO0 <O 0 ©BO
© o [oX o

20

0 5 iO 15
£y —p*

= number of iterations much smaller than 375(f(2(9)) — p*) + 6

25 30 35

s bound of the form ¢(f(x(?)) — p*) + 6 with smaller ¢ (empirically) valid

m Dimension independence verified empirically.
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Equality Constraints
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Equality Constraints

m equality constrained minimization

m eliminating equality constraints

m Newton's method with equality constraints
m infeasible start Newton method

m implementation
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Equality constrained minimization

minimize  f(x)
subject to Ax =1b

m [ convex, twice continuously differentiable
m A e RP™ with Rank A =p

m we assume p~ is finite and attained

optimality conditions: z* is optimal iff there exists a v* such that

Vf(x*)+ ATv* =0, Ax* =b
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equality constrained quadratic minimization (with P € S/)

minimize  (1/2)z! Pz +q'xz +r
subject to Az =1b

o =L

m coefficient matrix is called KKT matrix

optimality condition:

s KKT matrix is nonsingular if and only if

Az =0, z#0 — e Px > 0

= equivalent condition for nonsingularity: P+ A A >~ 0
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Eliminating equality constraints

represent solution of {z | Az = b} as

{x | Az =b} ={Fz+2|2€R" P}

= T is (any) particular solution

s range of F' € R"*("=P) is nullspace of A (Rank F =n —p and AF = 0)

reduced or eliminated problem

minimize f(Fz+ )

m an unconstrained problem with variable z € R*™P

m from solution z*, obtain x* and v* as

¥ =Fz"+ 1z, v = —(AAT) LAV f(2*)
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example: optimal allocation with resource constraint

minimize  fi(z1) + fa(z2) + - + fu(zn)
subjectto x1+x9+---+x, =0

eliminate x,, =b—x1 —--- — x,,_1, t.e., choose
. 1 _
€r — b€n7 F = [ _1T ] -~ Rnx(n 1)

reduced problem:

minimize  f1(z1) + - + fac1(@n-1) + fu(b— 21—+

(variables z1, . .., xp_1)
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

710 5% ][

interpretations

s Az, solves second order approximation (with variable v)

AN

minimize  f(z +v) = f(z) + Vf(z)Tv+ (1/2)vI'V2f(x)v
+v) =25

subject to A(x

v)

m equations follow from linearizing optimality conditions

Vf(x+ Azy) + ATw =0, A(x + Azxyg) = b
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Newton decrement

A@) = (A2h V2 (@) Arw) " = (~Vf (@) Azw)

properties
= gives an estimate of f(x) — p* using quadratic approximation ]/"\

fa)— it Fly) = pA(@)

Ay=b

m directional derivative in Newton direction:

d _ 2
Ef(x + tAxyy) = —\(x)

1/2

n in general, A\(z) # (Vf(2)!V2f(z) 'V f(x))
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Newton’s method with equality constraints

given starting point x € dom f with Ax = b, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement Az, A(z).
2. Stopping criterion. quit if \?/2 < e.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + tAxyy.

= a feasible descent method: z(*) feasible and f(x““*”) < f(a;(k))

m affine invariant
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Newton’s method and elimination

Newton’s method for reduced problem

~

minimize f(z) = f(Fz+ )

m variables z € R*»™P
m 2 satisfies Az =b; Rank FF=n —pand AF =0

m Newton's method for f started at 2(0) generates iterates 2(F)

Newton’s method with equality constraints

when started at (%) = F2(0) + % iterates are

g F D = pa®) 4 g

hence, don't need separate convergence analysis
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Newton step at infeasible points

2nd interpretation of page 55 extends to infeasible = (i.e., Ax # b)

linearizing optimality conditions at infeasible z (with x € dom f) gives

SR e HCI I

primal-dual interpretation

= write optimality condition as r(y) = 0, where

y = (x,v), r(y) = (Vf(x) + ATv, Az — b)

= linearizing r(y) = 0 gives r(y + Ay) =~ r(y) + Dr(y)Ay = 0:

e 4[] - [p

same as (13) with w = v + Avy
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Infeasible start Newton method

given starting point € dom f, v, tolerance € > 0, a € (0,1/2), 5 € (0,1).
repeat
1. Compute primal and dual Newton steps Az, Avpgt.
2. Backtracking line search on ||7||-.
t:=1.
while ||r(z + tAxpn, v + tAvy)||2 > (1 — at)||r(x, v)
3. Update. z := x + tAxpn, Vv = v+ tAvy.
until Ax = b and ||r(x,v)||2 <e.

i
I

Bt.

2,

= not a descent method: f(z**+1)) > f(z(*) is possible

= directional derivative of ||r(y)||3 in direction Ay = (Axyg, Avyy) is

d

lry+ Ayl = —llr@)ll
t=0
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Solving KKT systems

solution methods

s LDLT factorization

= elimination (if H nonsingular)

AH *ATw=h—-AH 1y, Hv = —(g+ Alw)

m elimination with singular H: write as

H+ATQA AT [ w1 [ g+ATQh
A 0 w | h

with Q > 0 for which H + ATQA > 0, and apply elimination
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Equality constrained analytic centering

primal problem: minimize — 3" | logx; subject to Ax =b

dual problem: maximize —b'v + > " log(A'v); + n

three methods for an example with A € R199%500 different starting points

1. Newton method with equality constraints (requires 2(9) = 0, Az(9) = p)
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2. Newton method applied to dual problem (requires A7v(0) - ()

10°

10Y

107°

p* — g(v™)

—10
10 0

3. infeasible start Newton method (requires (?) > 0)

10° 9
:

10Y

107°

I (2, v ™)
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

diag(z)* AT ] [ Aa ] B [ diag(z)1 ]

reduces to solving Adiag(z)?Alw = b
2. solve Newton system Adiag(Alv) 2ATAv = —b+ Adiag(ATv)~ 11

3. use block elimination to solve KKT system

e ][] [

reduces to solving Adiag(z)?ATw = 2A4x — b

conclusion: in each case, solve ADATw = h with D positive diagonal. It helps if
this linear system is structured.
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Network flow optimization

minimize Z?{;l ¢i(z;)
subjectto Ax =1b

m directed graph with n arcs, p + 1 nodes
= z;: flow through arc i; ¢;: cost flow function for arc i (with ¢ (z) > 0)

= node-incidence matrix A € R®P+1 X7 defined as

1 arc j leaves node i
A;; =<¢ —1 arcj enters node i
0 otherwise

s reduced node-incidence matrix A € RPX" is A with last row removed
m b€ RPis (reduced) source vector

s Rank A = p if graph is connected
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KKT system

s H =diag(¢7(z1),...,¢)(x,)), positive diagonal

m solve via elimination:
AH *ATw=h—-AH 1y, Hv=—(g+ A'w)
sparsity pattern of coefficient matrix is given by graph connectivity

(AHT'AD);; #0 <= (447); #0

<= nodes 7 and j are connected by an arc
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Analytic center of linear matrix inequality

minimize —logdet X
subject to Tr(A;X)=10b;, i=1,...,p

variable X € S"
optimality conditions

p

X* =0, —(X)7'+Y viA;=0,  Tr(AX*)=b, i=1,...p

J=1

Newton equation at feasible X:

p
XTAXX T 4 wjdi =X Tr(A,AX)=0, i=1,...,p
j=1

= follows from linear approximation (X + AX) '~ X1 - X" 1AX X!
s n(n+1)/2+ p variables AX, w
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solution by block elimination

= eliminate AX from first equation: AX = X — > 77 | w; XA; X

m substitute AX in second equation
p
Y Tr(AXAX)wj=b, i=1,...p (14)
71=1

a dense positive definite set of linear equations with variable w € RP

flop count (dominant terms) using Cholesky factorization X = LL?:

s form p products LT A;L: (3/2)pn3
s form p(p + 1)/2 inner products Tr((L* A;L)(LT A;L)): (1/2)p*n?
= solve (14) via Cholesky factorization: (1/3)p?
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Barrier Method
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Barrier Method

m inequality constrained minimization

m logarithmic barrier function and central path
m barrier method

m feasibility and phase | methods

m complexity analysis via self-concordance

m generalized inequalities
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Inequality constrained minimization

minimize  fy(x
subject to fz(

)
)§ 1=1,...,m (15)
Axz =b

m f; convex, twice continuously differentiable
m Ac RP" with Rank A =p
m we assume p* is finite and attained

m we assume problem is strictly feasible: there exists & with
x € dom fy, fi(z) <0, 1=1,...,m, Ax =10

hence, strong duality holds and dual optimum is attained
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Examples

s LP, QP, QCQP, GP
m entropy maximization with linear inequality constraints
minimize > ", x;logx;
subjectto Fx <Xg
Ax =10
with dom fo = R’} |

m differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or {,,-norm approximation via LP

m SDPs and SOCPs are better handled as problems with generalized inequalities
(see later)
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Logarithmic barrier

reformulation of (15) via indicator function:

minimize  fo(z) + ;2 I-(fi(z))

subject to Az =1b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/1) Y1, log(—fi(x))

subject to Ax =1b

m an equality constrained problem

m fort >0, —(1/t)log(—u) is a smooth
approximation of /_

m approximation improves as t — o0

23 —9 1 0 1
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logarithmic barrier function

— —Zlog(—fi(a;)), dom ¢ = {z | fi(x) <O0,..., fm(z) <0}

= convex (follows from composition rules)

m twice continuously differentiable, with derivatives

Ms

Vo(z) =

V2(z) = Z Vi@V il +Z Vi fi(@)

fz)
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Central path

s for ¢t > 0, define 2*(¢) as the solution of

minimize  tfo(x) + ¢(x)
subject to Ax =1b

(for now, assume x*(t) exists and is unique for each t > 0)

= central path is {x*(¢) | t > 0}

example: central path for an LP

minimize ¢!z

subject to alx <b;, i=1,...,6

hyperplane cl'z = cl'2*(t) is tangent to level
curve of ¢ through z*(t)
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Dual points on central path

x = x*(t) if there exists a w such that

£V fo(z) + Viz)+ATw =0, Az=0b

1
= —fi(z)
s therefore, £*(t) minimizes the Lagrangian

L(z, N*(t),v*(t)) = folz) + Z A () fi(z) + v (4)" (Az — b)

where we define A\¥(¢) = 1/(—tf;(z*(t)) and v*(¢) = w/t. We get dual points
for free.

= this confirms the intuitive idea that fo(z*(t)) — p* if t — oo
Pt = g(\(@), v (1))
= L(x7(t), A*(2),v*(t))
= Jfo(z™(t)) —m/t
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Interpretation via KKT conditions

x=1x*(t), A= N(t), v = v*(t) satisfy

primal constraints: f;(z) <0,i=1,...,m, Axr =0

dual constraints: A > 0

s o=

gradient of Lagrangian with respect to x vanishes:

V fo(x) + Z ANV fi(z) + ATy =0
i=1

difference with KKT is that condition 3 replaces \; f;(z) =0

A. d'Aspremont. M1 ENS.
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(xz) — >0 log(— fi(x))

force field interpretation

s tfo(x) is potential of force field Fy(x) = —tV fo(x)
s —log(—f;(x)) is potential of force field F;(x) = (1/f;(x))V fi(x)

the forces balance at x*(¢):
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example

minimize ¢!z
subject to alx <b;, i=1,...,m
= objective force field is constant: Fy(x) = —tc

m constraint force field decays as inverse distance to constraint hyperplane:

—a; 1

T i(@)ll2 = dist(z, H,;)

)

Fil@) = b —a

y
T

where H; = {z | al z = b;}

—3c
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Barrier method

given strictly feasible x, t := t(0) >0, 1 > 1, tolerance ¢ > 0.

repeat

1. Centering step. Compute x*(t) by minimizing tfy + ¢, subject to Ax = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

= terminates with fo(z) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

m centering usually done using Newton’s method, starting at current x

m choice of u involves a trade-off: large 1 means fewer outer iterations, more
inner problem minimization iterations (i.e. Newton steps);
typical values: © = 10-20

» several heuristics for choice of (9
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Convergence analysis

number of outer (centering) iterations: exactly

Pog(M/ (Et(O)))w

log 11

plus the initial centering step (to compute :U*(t(o)))

centering problem
minimize tfo(x) + ¢(x)

see convergence analysis of Newton's method

= tfy + ¢ must have closed sublevel sets for ¢ > ¢(0)
m classical analysis requires strong convexity, Lipschitz condition

m analysis via self-concordance requires self-concordance of ¢ fy + ¢
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

102
0

o 10
[g]
o0
210777
"
=
o 10—4,

106 =50 pu=150 =2

0 20 40 60 80

Newton iterations

m starts with x on central path (t(o) = 1, duality gap 100)

= terminates when ¢t = 10° (gap 10_6)

m centering uses Newton's method with backtracking

Newton iterations

1407
120
100y,
80
607
407
20¢

40

80

120

m total number of Newton iterations not very sensitive for © > 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 2221 exp(ad,x + bOk))

subject to log 2221 exp(alx + bzk)) <0, 71=1,....m

duality gap
=

10_4 -

0 20 40 60 &80 100 120
Newton iterations
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family of standard LPs (A € R™*2™)

minimize clzx

subjectto Ar=0b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances

35

Newton iterations

154 ‘ ‘
10t 102 103

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that

file) <0, i=1,...,m, Ax =10 (16)
phase |: computes strictly feasible starting point for barrier method
basic phase | method

minimize (over x, s) s
subject to filr)<s, i=1,....m (17)
Ax =b

s if z, s feasible, with s < 0, then x is strictly feasible for (16)
= if optimal value p* of (17) is positive, then problem (16) is infeasible

= if p* = 0 and attained, then problem (16) is feasible (but not strictly);
if p* = 0 and not attained, then problem (16) is infeasible
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sum of infeasibilities phase | method
minimize 17s
subjectto s>=0, fi(x)<s;, i=1,....m
Axr =10

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60
5 40} 5 40}
0 0
& £
=) =)
c 20+ c 20}
0 Jﬂ_ﬂ—mm mmmmm O 0 fee O HH e e 0
-1 —0.5 0 TO.5 1 1.5 —1 —0.5 0 0.5 1 1.5

T
bi — A; Tmax bz — A; Lsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 inequalities
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example: family of linear inequalities Az < b+ vAb
m data chosen to be strictly feasible for v > 0, infeasible for v <0

m use basic phase |, terminate when s < 0 or dual objective is positive

n 100t 3
s |
+ 807 Infeasible | Feasible
3 i
..l:) 4
-
o
-+ |
3 |
(] |
= |
O , | .
-1 —0.5 0 0.5 1
Y
") n 100+
[ c
.2 0
+ +
@ @
(D) ()]
2 2
c c
o o
S S
o 20r )
= =
05 —2 —4 6 0% —4 ) 0
—10 —10 ~ —10 —10 10 10 ~ 10 10

number of iterations roughly proportional to log(1/|v])
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Complexity analysis via self-concordance

same assumptions as on page 71, plus:

= sublevel sets (of fp, on the feasible set) are bounded

m tfo+ @ is self-concordant with closed sublevel sets

second condition

m holds for LP, QP, QCQP

m may require reformulating the problem, e.g.,

minimize Y.  x;logx; —  minimize >  x;loga;
subjectto Fzx <Xg subjectto Fx <Xg, x>0

m needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

ut fo(x) + ¢(x) — pt fo(x™) — ¢(a™)

#Newton iterations < +c
Y

= bound on effort of computing ™ = x*(ut) starting at x = 2*(t)

m Note: The complexity of Newton's method is independent of m, but the
precision target is not in this case. v, ¢ are constants (line search params).

= from duality (with A = \*(¢), v = v*(t)):
utfo(x) + ¢(x) — ptfo(z™) — d(2™)

= ptfo(z) — pt folx +Zlog (—ptifi(z™)) —mlog p

< ptfo(w) — ptfola utZA fi(z™) —m —mlogp

< ptfo(z) — ptg(A,v) —m — mlogu
= m(p—1—logu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = {

1og<m/<t<0>e>>1 (m(u —1-logp) )

log p Y
510%
4104
310! shows N for typical values of v, c,
Z
m 5

41 i o —
210 m = 100, 0, 10
110%f

O I

1 1.1 1.2

i

m confirms trade-off in choice of u

m in practice, #iterations is in the tens; not very sensitive for ;> 10
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polynomial-time complexity of barrier method

m foruy=1+1/y/m:

o (4)

= number of Newton iterations for fixed gap reduction is O(y/m)

= multiply with cost of one Newton iteration (solving a linear system: cost is a
polynomial function of problem dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose u fixed
(n=10,...,20)
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Generalized inequalities

minimize  fo(x)
subject to  fi(x) <k, i=1,....m
Axr =b
m fo convex, f; : R® = RFi, i =1,...,m, convex with respect to proper cones

K; € RFi
m f; twice continuously differentiable
m Ac RP" with Rank A =p
m we assume p* is finite and attained

m we assume problem is strictly feasible; hence strong duality holds and dual
optimum is attained

Very useful generalization of linear programming. Examples of greatest
interest: SOCP, SDP
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Generalized logarithm for proper cone

Y : R? — R is generalized logarithm for proper cone K C R? if:

s dom+ = int K and V%) (y) < 0 for y =5 0
m Y(sy) =U(y) +0logs for y =k 0, s > 0 (0 is the degree of 1))

examples
= nonnegative orthant K = R": ¢(y) = >_._; logy;, with degree § =n

= positive semidefinite cone K =S’ :

Y(Y) =logdetY (0 =n)

s second-order cone K = {y e R | (42 + -+ y2)V2 <y }:

v(y) =loglypn —vi—-—ys)  (0=2)
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properties (without proof): for y > 0,

Viy(y) =x+ 0, vy Vi(y) =6

= nonnegative orthant R} : ¢(y) = Z?:l log v;
Vly) = 1/y1, .- ), ¥y Vo(y)=n

= positive semidefinite cone S%: (YY) = logdetY

Vp(Y)=Y"",  Tr(YVy(Y)) =n

s second-order cone K = {y € R*"*1 | (2 + -+ 2)/2 <y, 1 }:

—U
L Yy VY(y) =2

e T V7 Wit
| Yt |
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Logarithmic barrier and central path

logarithmic barrier for fi(z) <k, 0, ..., fm(x) <Kk, O:

o(x) = — Z%(—f};(m))a dom¢ = {z | fi(r) <k, 0, i =1,...,m}

m ; is generalized logarithm for K;, with degree 6;

m ¢ is convex, twice continuously differentiable

central path: {z*(¢) | ¢ > 0} where x*(¢) solves

minimize  tfo(z) + ¢(x)
subject to Az =1b
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Dual points on central path

x = x*(t) if there exists w € RP,
tVf() —|— Z sz TV@DZ fz(il?)) + ATw =0

(Dfi(x) € R*iX™ is derivative matrix of fi)

= therefore, x*(t) minimizes Lagrangian L(x, \*(t),v*(t)), where

N = V(R ®), v =
= from properties of ¥;: \f(t) =k 0, with duality gap
fo(z™(t)) — g(A*(¢), v™(¢)) = (1/1) Zei
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example: semidefinite programming (with F; € SP)

minimize ¢!z

subject to  F(x) =Y z;F; + G =<0

= logarithmic barrier: ¢(z) = log det(—F(z)™!)

= central path: 2*(¢) minimizes tc!'z — log det(—F(x)); hence

tCi—rI‘I'(Fz'F(ZE*(t))_l) :O, 1= 1,...,77,

= dual point on central path: Z*(t) = —(1/t)F(x*(t)) ! is feasible for

maximize Tr(GZ)
subject to Tr(F;Z)+c¢; =0, i=1,...,n
Z =0

= duality gap on central path: cl2*(t) — Tr(GZ*(t)) = p/t

A. d'Aspremont. M1 ENS.

97/103



Barrier method

given strictly feasible x, t := t(0) >0, 1 > 1, tolerance ¢ > 0.

repeat

1. Centering step. Compute x*(t) by minimizing tfy + ¢, subject to Ax = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if (>_.60;)/t <.

4. Increase t. t := ut.

= only difference is duality gap m/t on central path is replaced by > . 6;/t

m number of outer iterations:

{bg(@ 9i>/<et<0>>>w

log 11

m complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R%)

102 - ") |
. £ 120,
S 10° 5
60 s 7
21072 42 80
T:su —4 2 t |
< 10 7 7 = 40 :
1078  w=50 p=200 =2 = | |
0 20 40 60 20 050 60 100 140 180
Newton iterations M

semidefinite program (100 variables, LMI constraint in S$'%°)

140
2
10 il g
é%o 100 : @ 100/
2 102 P
-T—U c 60¢
S 1074 | S
o) b : c%
1076 p=150'p =50 =2 = 20
0 20 10 60 20 100 0 20 40 60 80 100 120
Newton iterations M
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family of SDPs (A € S”, z € R™)

minimize 17z
subject to A + diag(z) =0

n = 10,...,1000, for each n solve 100 randomly generated instances

35

301

Newton iterations

10! 102 103
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

m update primal and dual variables at each iteration; no distinction between inner
and outer iterations

m often exhibit superlinear asymptotic convergence

m search directions can be interpreted as Newton directions for modified KKT
conditions

m can start at infeasible points

m cost per iteration same as barrier method
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Interior-point methods: summary

= Interior point methods (IPM) are very reliable on small scale problems.

o Example: SDP of dimension 100, SOCP with less than a thousand variables.

o Most conic problems with a couple of hundred variables can formulated and
solved very quickly using preprocessors such as CVX.

m |IPM often efficient on larger problems if KKT system has some structure
(sparsity, blocks, etc).

o Large scale linear programs with thousands of variables are routinely solved
by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK,
CPLEX, etc.).

o Much larger sparse LPs can also be solved efficiently using the same
techniques.

m Not workable for very large problems.

o For some problems, e.g. semidefinite programs, exploiting structure in IPM
is hard.

o First order methods (using the gradient only) seem to be the only option for
extremely large problems
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Semidefinite programming: CVX

Solving the maxcut relaxation

max. Tr(XC)
st. diag(X)=1
X =0,

is written as follows in CVX/MATLAB

cvx_begin
variable X(n,n) symmetric
maximize trace(Cx*X)
subject to
diag(X)==
X==semidefinite(n)
cvx_end
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