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Today

Interior point methods.

� Unconstrained minimization

� Barrier method

� Primal dual methods
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Unconstrained minimization
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Unconstrained minimization

� terminology and assumptions

� gradient descent method

� steepest descent method

� Newton’s method

� self-concordant functions

� implementation
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Unconstrained minimization

minimize f(x)

� f convex, twice continuously differentiable (hence dom f open)

� we assume optimal value p? = infx f(x) is attained (and finite)

unconstrained minimization methods

� produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k))→ p?

� can be interpreted as iterative methods for solving optimality condition

∇f(x?) = 0
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Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

� x(0) ∈ dom f

� sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

� equivalent to condition that epi f is closed

� true if dom f = Rn

� true if f(x)→∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑
i=1

exp(aTi x+ bi)), f(x) = −
m∑
i=1

log(bi − aTi x)
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

� for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

� p? > −∞, and for x ∈ S,

f(x)− p? ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)
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Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

� other notations: x+ = x+ t∆x, x := x+ t∆x

� ∆x is the step, or search direction; t is the step size, or step length

� from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.
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Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

� starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

� graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x
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Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

� stopping criterion usually of the form ‖∇f(x)‖2 ≤ ε

� convergence result: for strongly convex f ,

f(x(k))− p? ≤ ck(f(x(0))− p?)

c ∈ (0, 1) depends on m, x(0), line search type

� very simple, but often very slow; rarely used in practice
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quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

� very slow if γ � 1 or γ � 1

� example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4
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nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search
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a problem in R100

f(x) = cTx−
500∑
i=1

log(bi − aTi x)

k

f
(x

(k
) )

−
p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆sd = −‖∇f(x)‖2∗

steepest descent method

� general descent method with ∆x = ∆xsd

� convergence properties similar to gradient descent
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examples

� Euclidean norm: ∆xsd = −∇f(x)

� quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

� `1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm and the
`1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd
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choice of norm for steepest descent

x(0)

x(1)
x(2)

x
(0)

x
(1)

x
(2)

� steepest descent with backtracking line search for two quadratic norms

� ellipses show {x | ‖x− x(k)‖P = 1}

� equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence
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Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

� x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

� x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

0
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� ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1} arrow
shows −∇f(x)

A. d’Aspremont. M1 ENS. 18/103



Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
a measure of the proximity of x to x?

properties

� gives an estimate of f(x)− p?, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

� equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇2f(x)∆xnt

)1/2
� directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

� affine invariant (unlike ‖∇f(x)‖2)
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Newton’s method

given a starting point x ∈ dom f , tolerance ε > 0.
repeat

1. Compute the Newton step and decrement.
∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)
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Classical convergence analysis

assumptions

� f strongly convex on S with constant m

� ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

� if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ

� if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2
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Classical convergence analysis

damped Newton phase (‖∇f(x)‖2 ≥ η)

� most iterations require backtracking steps

� function value decreases by at least γ

� if p? > −∞, this phase ends after at most (f(x(0))− p?)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

� all iterations use step size t = 1

� ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(

1

2

)2l−k

, l ≥ k
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Classical convergence analysis

conclusion: number of iterations until f(x)− p? ≤ ε is bounded above by

f(x(0))− p?

γ
+ log2 log2(ε0/ε)

� γ, ε0 are constants that depend on m, L, x(0)

� second term is small (of the order of 6) and almost constant for practical
purposes

� in practice, constants m, L (hence γ, ε0) are usually unknown

� provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R2 (page 12)

x(0)

x(1)

k

f
(x

(k
) )

−
p
⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

� backtracking parameters α = 0.1, β = 0.7

� converges in only 5 steps

� quadratic local convergence
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example in R100 (page 13)

k

f
(x

(k
) )

−
p
⋆

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10
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100
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k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

� backtracking parameters α = 0.01, β = 0.5

� backtracking line search almost as fast as exact l.s. (and much simpler)

� clearly shows two phases in algorithm
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example in R10000 (with sparse ai)

f(x) = −
10000∑
i=1

log(1− x2i )−
100000∑
i=1

log(bi − aTi x)

k

f
(x

(k
) )

−
p
⋆

0 5 10 15 20

10−5

100

105

� backtracking parameters α = 0.01, β = 0.5.

� performance similar as for small examples
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = g

where H = ∇2f(x), g = −∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = L−TL−1g, λ(x) = ‖L−1g‖2

� cost (1/3)n3 flops for unstructured system

� cost � (1/3)n3 if H sparse, banded
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example of dense Newton system with structure

f(x) =

n∑
i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

� assume A ∈ Rp×n, dense, with p� n

� D diagonal with diagonal elements ψ′′i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2: factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1AL0)
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Self-concordance

shortcomings of classical convergence analysis

� depends on unknown constants (m, L, . . . )

� bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

� does not depend on any unknown constants

� gives affine-invariant bound

� applies to special class of convex functions (‘self-concordant’ functions)

� developed to analyze polynomial-time interior-point methods for convex
optimization
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Self-concordant functions

definition

� f : R→ R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x ∈ dom f

� f : Rn → R is self-concordant if g(t) = f(x+ tv) is self-concordant for all
x ∈ dom f , v ∈ Rn

examples on R

� linear and quadratic functions

� negative logarithm f(x) = − log x

� negative entropy plus negative logarithm: f(x) = x log x− log x

affine invariance: if f : R→ R is s.c., then f̃(y) = f(ay + b) is s.c.:

f̃ ′′′(y) = a3f ′′′(ay + b), f̃ ′′(y) = a2f ′′(ay + b)
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Self-concordant calculus

properties

� preserved under positive scaling α ≥ 1, and sum

� preserved under composition with affine function

� if g is convex with dom g = R++ and |g′′′(x)| ≤ 3g′′(x)/x then

f(x) = log(−g(x))− log x

is self-concordant

examples: properties can be used to show that the following are s.c.

� f(x) = −
∑m

i=1 log(bi − aTi x) on {x | aTi x < bi, i = 1, . . . ,m}

� f(X) = − log detX on Sn
++

� f(x) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}
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Self-concordance: complexity analysis

Newton’s method for self-concordant functions.

Convergence proof:

� Affine invariant bounds on Hessian

� Newton decrement and bounds on suboptimality

� Damped Newton phase

� Quadratic Newton phase

We often only consider univariate functions to simplify analysis. . .
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Self-concordance: complexity analysis

Affine invariant bounds on the Hessian. Replace Lipschitz bounds and strong
convexity in classical analysis.

Lemma

Hessian bounds. Suppose f : R → R is a convex self-concordant function,
either f ′′(x) = 0 for all x ∈ dom f , or f ′′(x) > 0 for all x ∈ dom f .

Proof. Suppose f ′′(0) > 0, f ′′(x̄) = 0 for x̄ > 0, and f ′′(x) > 0 on the interval
between 0 and x̄. We have

d

dx
f ′′(x)−1/2 = (−1/2)

f ′′′(x)

f ′′(x)3/2
,

this means we can write the self-concordance inequality |f ′′′(x)| ≤ 2f ′′(x)3/2 for
all x ∈ dom f as ∣∣∣∣ ddt (f ′′(t)−1/2)

∣∣∣∣ ≤ 1 (1)
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for all t ∈ dom f . This holds for x between 0 and x̄. Integrating gives

f ′′(x̄)−1/2 − f ′′(0)−1/2 ≤ x̄

which contradicts f ′′(x̄) = 0.
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Self-concordance: complexity analysis

Proposition

Hessian bounds. Suppose f : R → R is a strictly convex self-concordant
function. We have

f ′′(0)(
1 + tf ′′(0)1/2

)2 ≤ f ′′(t) ≤ f ′′(0)(
1− tf ′′(0)1/2

)2. (2)

The lower bound is valid for all nonnegative t ∈ dom f , the upper bound is valid
if t ∈ dom f and 0 ≤ t < f ′′(0)−1/2.

Proof. Assuming t ≥ 0 and the interval between 0 and t is in dom f , we can
integrate (1) between 0 and t to obtain

−t ≤
∫ t

0

d

dτ

(
f ′′(τ)−1/2

)
dτ ≤ t,

i.e., −t ≤ f ′′(t)−1/2 − f ′′(0)−1/2 ≤ t. From this we obtain lower and upper
bounds on f ′′(t).
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Self-concordance: complexity analysis

Lemma

Newton Decrement. Let λ(x) be the Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
.

We have, for any nonzero v

−vT∇f(x)

(vT∇2f(x)v)1/2
≤ λ(x) (3)

with equality for v = ∆xnt.

Proof. The Newton decrement can also be expressed as

λ(x) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)1/2

using ‖w‖2 = sup‖x‖2=1w
Tx, after setting y = (∇2f(x))1/2v.
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Self-concordance: complexity analysis

Proposition

Bounds on suboptimality. Let f : Rn → R be a strictly convex self-concordant
function. We have

p? ≥ f(x)− λ(x)2 (4)

which is valid for λ(x) ≤ 0.68.

Proof. Let v be a descent direction (i.e., any direction satisfying vT∇f(x) < 0,
not necessarily the Newton direction). Define f̃ : R→ R as f̃(t) = f(x+ tv). By
definition, the function f̃ is self-concordant.

Integrating the lower bound in (2) yields a lower bound on f̃ ′(t):

f̃ ′(t) ≥ f̃ ′(0) + f̃ ′′(0)1/2 − f̃ ′′(0)1/2

1 + tf̃ ′′(0)1/2
. (5)
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Integrating again yields a lower bound on f̃(t):

f̃(t) ≥ f̃(0) + tf̃ ′(0) + tf̃ ′′(0)1/2 − log(1 + tf̃ ′′(0)1/2). (6)

The righthand side reaches its minimum at

t̄ =
−f̃ ′(0)

f̃ ′′(0) + f̃ ′′(0)1/2f̃ ′(0)
,

and evaluating at t̄ provides a lower bound on f̃ :

inf
t≥0

f̃(t) ≥ f̃(0) + t̄f̃ ′(0) + t̄f̃ ′′(0)1/2 − log(1 + t̄f̃ ′′(0)1/2)

= f̃(0)− f̃ ′(0)f̃ ′′(0)−1/2 + log(1 + f̃ ′(0)f̃ ′′(0)−1/2).

The inequality (3) can be expressed as

λ(x) ≥ −f̃ ′(0)f̃ ′′(0)−1/2

(with equality when v = ∆xnt), since we have

f̃ ′(0) = vT∇f(x), f̃ ′′(0) = vT∇2f(x)v.
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Now using the fact that u+ log(1− u) is a monotonically decreasing function of
u, and the inequality above, we get

inf
t≥0

f̃(t) ≥ f̃(0) + λ(x) + log(1− λ(x)).

This inequality holds for any descent direction v. Therefore

p? ≥ f(x) + λ(x) + log(1− λ(x)) (7)

provided λ(x) < 1. The function − (λ+ log(1− λ)) satisfies

− (λ+ log(1− λ)) ≈ λ2/2,

for small λ, and the bound

− (λ+ log(1− λ)) ≤ λ2

for λ ≤ 0.68. Thus, we have the bound on suboptimality

p? ≥ f(x)− λ(x)2,

valid for λ(x) ≤ 0.68.
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Self-concordance: complexity analysis

Newton’s method with backtracking line search. Assume,

� f strictly convex self-concordant function

� A starting point x(0)

� Sublevel set S = {x | f(x) ≤ f(x(0))} is closed

� f is bounded below (has a minimizer).

We show that there are numbers η and γ > 0, with 0 < η ≤ 1/4, that depend
only on the line search parameters α and β, such that

� If λ(x(k)) > η, then
f(x(k+1))− f(x(k)) ≤ −γ. (8)

� If λ(x(k)) ≤ η, then the backtracking line search selects t = 1 and

2λ(x(k+1)) ≤
(

2λ(x(k))
)2
. (9)
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Self-concordance: complexity analysis

Proposition

Damped phase Let f : Rn → R be a strictly convex self-concordant function.
After one step of Newton’s method with backtracking line search

f(x(k+1))− f(x(k)) ≤ −αβ η2

1 + η
. (10)

Proof. Let f̃(t) = f(x+ t∆xnt), so we have

f̃ ′(0) = −λ(x)2, f̃ ′′(0) = λ(x)2.

If we integrate the upper bound in (2) twice, we obtain an upper bound for f̃(t):

f̃(t) ≤ f̃(0) + tf̃ ′(0)− tf̃ ′′(0)1/2 − log
(

1− tf̃ ′′(0)1/2
)

= f̃(0)− tλ(x)2 − tλ(x)− log(1− tλ(x)), (11)
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valid for 0 ≤ t < 1/λ(x).

We can use this bound to show the backtracking line search always results in a
step size t ≥ β/(1 + λ(x)). To prove this we note that the point t̂ = 1/(1 + λ(x))
satisfies the exit condition of the line search:

f̃(t̂) ≤ f̃(0)− t̂λ(x)2 − t̂λ(x)− log(1− t̂λ(x))

= f̃(0)− λ(x) + log(1 + λ(x))

≤ f̃(0)− α λ(x)2

1 + λ(x)

= f̃(0)− αλ(x)2t̂.

The second inequality follows from the fact that

−x+ log(1 + x) +
x2

2(1 + x)
≤ 0

for x ≥ 0. Since t ≥ β/(1 + λ(x)), we have

f̃(t)− f̃(0) ≤ −αβ λ(x)2

1 + λ(x)
.
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Self-concordance: complexity analysis

Lemma

Newton decrement: quadratic phase Let f : Rn → R be a strictly convex self-
concordant function. Suppose λ(x) < 1, and define x+ = x − ∇2f(x)−1∇f(x),
then

λ(x+) ≤ λ(x)2

(1− λ(x))2
.

Proof. Let v = −∇2f(x)−1∇f(x). From exercise 9.17, part (c), which
generalizes the affine lower and upper bounds on the Hessian, we have

(1− tλ(x))2∇2f(x) � ∇2f(x+ tv) � 1

(1− tλ(x))2
∇2f(x).

We can assume without loss of generality that ∇2f(x) = I (hence,
v = −∇f(x)), so

(1− λ(x))2I � ∇2f(x+) � 1

(1− λ(x))2
I,
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and write λ(x+) as

λ(x+) = ‖∇2f(x+)−1∇f(x+)‖2
≤ (1− λ(x))−1‖∇f(x+)‖2

= (1− λ(x))−1
∥∥∥∥(∫ 1

0

∇2f(x+ tv)v dt+∇f(x)

)∥∥∥∥
2

= (1− λ(x))−1
∥∥∥∥(∫ 1

0

(∇2f(x+ tv)− I) dt

)
v

∥∥∥∥
2

≤ (1− λ(x))−1
∥∥∥∥(∫ 1

0

(
1

(1− tλ(x))2
− 1) dt

)
v

∥∥∥∥
2

≤ ‖v‖2(1− λ(x))−1
∫ 1

0

(
1

(1− tλ(x))2
− 1) dt

=
λ(x)2

(1− λ(x))2
.

which is the desired result
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Self-concordance: complexity analysis

Proposition

Quadratic phase Let f : Rn → R be a strictly convex self-concordant function.
If λ(x(k)) ≤ η, where η = (1 − 2α)/4, after each step of Newton’s method with
backtracking line search

2λ(x(k+1)) ≤
(

2λ(x(k))
)2
.

Proof. Picking η = (1− 2α)/4 (which satisfies 0 < η < 1/4, since 0 < α < 1/2),
i.e., if λ(x(k)) ≤ (1− 2α)/4, we show that the backtracking line search accepts
the unit step and (9) holds.

Note that the upper bound (11) implies that a unit step t = 1 yields a point in
dom f if λ(x) < 1.
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Moreover, if λ(x) ≤ (1− 2α)/2, we have, using (11),

f̃(1) ≤ f̃(0)− λ(x)2 − λ(x)− log(1− λ(x))

≤ f̃(0)− 1

2
λ(x)2 + λ(x)3

≤ f̃(0)− αλ(x)2,

so the unit step satisfies the condition of sufficient decrease. (The second line
follows from the fact that −x− log(1− x) ≤ 1

2x
2 + x3 for 0 ≤ x ≤ 0.81.)

The result follows from the previous lemma: If λ(x) < 1, and
x+ = x−∇2f(x)−1∇f(x), then

λ(x+) ≤ λ(x)2

(1− λ(x))2
. (12)

In particular, if λ(x) ≤ 1/4,
λ(x+) ≤ 2λ(x)2,

which proves that the result we seek holds when λ(x(k)) ≤ η.
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Convergence analysis for self-concordant functions

Summary. There exist constants η ∈ (0, 1/4], γ > 0 such that

� if λ(x) > η, then
f(x(k+1))− f(x(k)) ≤ −γ

� if λ(x) ≤ η, then

2λ(x(k+1)) ≤
(

2λ(x(k))
)2

(η and γ only depend on backtracking parameters α, β)

Complexity bound. Number of Newton iterations bounded by

f(x(0))− p?

γ
+ log2 log2(1/ε)

for α = 0.1, β = 0.8, ε = 10−10, bound evaluates to 375(f(x(0))− p?) + 6.
Independent of the problem dimension!
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numerical example: 150 randomly generated instances of

minimize f(x) = −
∑m

i=1 log(bi − aTi x)

◦: m = 100, n = 50
2: m = 1000, n = 500
3: m = 1000, n = 50

f(x(0)) − p⋆

it
er
a
ti
o
n
s
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0
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20

25

� number of iterations much smaller than 375(f(x(0))− p?) + 6

� bound of the form c(f(x(0))− p?) + 6 with smaller c (empirically) valid

� Dimension independence verified empirically.
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Equality Constraints
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Equality Constraints

� equality constrained minimization

� eliminating equality constraints

� Newton’s method with equality constraints

� infeasible start Newton method

� implementation
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Equality constrained minimization

minimize f(x)
subject to Ax = b

� f convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

optimality conditions: x? is optimal iff there exists a ν? such that

∇f(x?) +ATν? = 0, Ax? = b
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equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition: [
P AT

A 0

] [
x?

ν?

]
=

[
−q
b

]

� coefficient matrix is called KKT matrix

� KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

� equivalent condition for nonsingularity: P +ATA � 0
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Eliminating equality constraints

represent solution of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

� x̂ is (any) particular solution

� range of F ∈ Rn×(n−p) is nullspace of A (RankF = n− p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

� an unconstrained problem with variable z ∈ Rn−p

� from solution z?, obtain x? and ν? as

x? = Fz? + x̂, ν? = −(AAT )−1A∇f(x?)
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example: optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)
subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I
−1T

]
∈ Rn×(n−1)

reduced problem:

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)

(variables x1, . . . , xn−1)
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of[
∇2f(x) AT

A 0

] [
∆xnt
w

]
=

[
−∇f(x)

0

]

interpretations

� ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

� equations follow from linearizing optimality conditions

∇f(x+ ∆xnt) +ATw = 0, A(x+ ∆xnt) = b
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Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=
(
−∇f(x)T∆xnt

)1/2
properties

� gives an estimate of f(x)− p? using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

� directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

� in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
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Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ε > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

� a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

� affine invariant
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Newton’s method and elimination

Newton’s method for reduced problem

minimize f̃(z) = f(Fz + x̂)

� variables z ∈ Rn−p

� x̂ satisfies Ax̂ = b; RankF = n− p and AF = 0

� Newton’s method for f̃ , started at z(0), generates iterates z(k)

Newton’s method with equality constraints

when started at x(0) = Fz(0) + x̂, iterates are

x(k+1) = Fz(k) + x̂

hence, don’t need separate convergence analysis
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Newton step at infeasible points

2nd interpretation of page 55 extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives[
∇2f(x) AT

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
(13)

primal-dual interpretation

� write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν,Ax− b)

� linearizing r(y) = 0 gives r(y + ∆y) ≈ r(y) +Dr(y)∆y = 0:[
∇2f(x) AT

A 0

] [
∆xnt
∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]
same as (13) with w = ν + ∆νnt
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Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ε > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat
1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x+ t∆xnt, ν + t∆νnt)‖2 > (1− αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x+ t∆xnt, ν := ν + t∆νnt.
until Ax = b and ‖r(x, ν)‖2 ≤ ε.

� not a descent method: f(x(k+1)) > f(x(k)) is possible

� directional derivative of ‖r(y)‖22 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y + ∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2
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Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
solution methods

� LDLT factorization

� elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

� elimination with singular H: write as[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q � 0 for which H +ATQA � 0, and apply elimination
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Equality constrained analytic centering

primal problem: minimize −
∑n

i=1 log xi subject to Ax = b

dual problem: maximize −bTν +
∑n

i=1 log(ATν)i + n

three methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) � 0, Ax(0) = b)

k

f
(x

(k
) )

−
p
⋆

0 5 10 15 2010−10

10−5

100

105
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2. Newton method applied to dual problem (requires ATν(0) � 0)

k

p
⋆
−

g
(ν

(k
) )

0 2 4 6 8 1010−10

10−5

100

105

3. infeasible start Newton method (requires x(0) � 0)

k

‖
r
(x

(k
) ,
ν
(k

) )
‖
2
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+Adiag(ATν)−11

3. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−11
Ax− b

]

reduces to solving Adiag(x)2ATw = 2Ax− b

conclusion: in each case, solve ADATw = h with D positive diagonal. It helps if
this linear system is structured.
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Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

� directed graph with n arcs, p+ 1 nodes

� xi: flow through arc i; φi: cost flow function for arc i (with φ′′i (x) > 0)

� node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =

 1 arc j leaves node i
−1 arc j enters node i

0 otherwise

� reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

� b ∈ Rp is (reduced) source vector

� RankA = p if graph is connected
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KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

� H = diag(φ′′1(x1), . . . , φ
′′
n(xn)), positive diagonal

� solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT )ij 6= 0 ⇐⇒ (AAT )ij 6= 0

⇐⇒ nodes i and j are connected by an arc
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Analytic center of linear matrix inequality

minimize − log detX
subject to Tr(AiX) = bi, i = 1, . . . , p

variable X ∈ Sn

optimality conditions

X? � 0, −(X?)−1 +

p∑
j=1

ν?jAi = 0, Tr(AiX
?) = bi, i = 1, . . . , p

Newton equation at feasible X:

X−1∆XX−1 +

p∑
j=1

wjAi = X−1, Tr(Ai∆X) = 0, i = 1, . . . , p

� follows from linear approximation (X + ∆X)−1 ≈ X−1 −X−1∆XX−1

� n(n+ 1)/2 + p variables ∆X, w
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solution by block elimination

� eliminate ∆X from first equation: ∆X = X −
∑p

j=1wjXAjX

� substitute ∆X in second equation

p∑
j=1

Tr(AiXAjX)wj = bi, i = 1, . . . , p (14)

a dense positive definite set of linear equations with variable w ∈ Rp

flop count (dominant terms) using Cholesky factorization X = LLT :

� form p products LTAjL: (3/2)pn3

� form p(p+ 1)/2 inner products Tr((LTAiL)(LTAjL)): (1/2)p2n2

� solve (14) via Cholesky factorization: (1/3)p3
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Barrier Method
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Barrier Method

� inequality constrained minimization

� logarithmic barrier function and central path

� barrier method

� feasibility and phase I methods

� complexity analysis via self-concordance

� generalized inequalities
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Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(15)

� fi convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

� we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

� LP, QP, QCQP, GP

� entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx � g

Ax = b

with dom f0 = Rn
++

� differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or `∞-norm approximation via LP

� SDPs and SOCPs are better handled as problems with generalized inequalities
(see later)

A. d’Aspremont. M1 ENS. 72/103



Logarithmic barrier

reformulation of (15) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) =∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

� an equality constrained problem

� for t > 0, −(1/t) log(−u) is a smooth
approximation of I−

� approximation improves as t→∞

u
−3 −2 −1 0 1

−5

0

5

10
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logarithmic barrier function

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

� convex (follows from composition rules)

� twice continuously differentiable, with derivatives

∇φ(x) =

m∑
i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)
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Central path

� for t > 0, define x?(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x?(t) exists and is unique for each t > 0)

� central path is {x?(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx?(t) is tangent to level
curve of φ through x?(t)

c

x⋆ x⋆(10)
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Dual points on central path

x = x?(t) if there exists a w such that

t∇f0(x) +

m∑
i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

� therefore, x?(t) minimizes the Lagrangian

L(x, λ?(t), ν?(t)) = f0(x) +

m∑
i=1

λ?i (t)fi(x) + ν?(t)T (Ax− b)

where we define λ?i (t) = 1/(−tfi(x?(t)) and ν?(t) = w/t. We get dual points
for free.

� this confirms the intuitive idea that f0(x
?(t))→ p? if t→∞:

p? ≥ g(λ?(t), ν?(t))

= L(x?(t), λ?(t), ν?(t))

= f0(x
?(t))−m/t
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Interpretation via KKT conditions

x = x?(t), λ = λ?(t), ν = ν?(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m∑
i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x)−
∑m

i=1 log(−fi(x))

force field interpretation

� tf0(x) is potential of force field F0(x) = −t∇f0(x)

� − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x?(t):

F0(x
?(t)) +

m∑
i=1

Fi(x
?(t)) = 0
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example
minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

� objective force field is constant: F0(x) = −tc

� constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aTi x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aTi x = bi}

−c

−3c

t = 1 t = 3
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0.

repeat

1. Centering step. Compute x?(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x?(t).
3. Stopping criterion. quit if m/t < ε.
4. Increase t. t := µt.

� terminates with f0(x)− p? ≤ ε (stopping criterion follows from
f0(x

?(t))− p? ≤ m/t)

� centering usually done using Newton’s method, starting at current x

� choice of µ involves a trade-off: large µ means fewer outer iterations, more
inner problem minimization iterations (i.e. Newton steps);
typical values: µ = 10–20

� several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

⌈
log(m/(εt(0)))

logµ

⌉

plus the initial centering step (to compute x?(t(0)))

centering problem
minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

� tf0 + φ must have closed sublevel sets for t ≥ t(0)

� classical analysis requires strong convexity, Lipschitz condition

� analysis via self-concordance requires self-concordance of tf0 + φ
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations

d
u
a
li
ty

g
a
p

µ = 2µ = 50 µ = 150

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
a
ti
o
n
s

0 40 80 120 160 200
0

20

40

60

80

100

120

140

� starts with x on central path (t(0) = 1, duality gap 100)

� terminates when t = 108 (gap 10−6)

� centering uses Newton’s method with backtracking

� total number of Newton iterations not very sensitive for µ ≥ 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT0kx+ b0k)
)

subject to log
(∑5

k=1 exp(aTikx+ bik)
)
≤ 0, i = 1, . . . ,m

Newton iterations
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (16)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(17)

� if x, s feasible, with s < 0, then x is strictly feasible for (16)

� if optimal value p̄? of (17) is positive, then problem (16) is infeasible

� if p̄? = 0 and attained, then problem (16) is feasible (but not strictly);
if p̄? = 0 and not attained, then problem (16) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax
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bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities
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example: family of linear inequalities Ax � b+ γ∆b

� data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

� use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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Complexity analysis via self-concordance

same assumptions as on page 71, plus:

� sublevel sets (of f0, on the feasible set) are bounded

� tf0 + φ is self-concordant with closed sublevel sets

second condition

� holds for LP, QP, QCQP

� may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx � g

−→ minimize
∑n

i=1 xi log xi
subject to Fx � g, x � 0

� needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x)− µtf0(x+)− φ(x+)

γ
+ c

� bound on effort of computing x+ = x?(µt) starting at x = x?(t)

� Note: The complexity of Newton’s method is independent of m, but the
precision target is not in this case. γ, c are constants (line search params).

� from duality (with λ = λ?(t), ν = ν?(t)):

µtf0(x) + φ(x)− µtf0(x+)− φ(x+)

= µtf0(x)− µtf0(x+) +

m∑
i=1

log(−µtλifi(x+))−m logµ

≤ µtf0(x)− µtf0(x+)− µt
m∑
i=1

λifi(x
+)−m−m logµ

≤ µtf0(x)− µtg(λ, ν)−m−m logµ

= m(µ− 1− logµ)
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total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈
log(m/(t(0)ε))

logµ

⌉(
m(µ− 1− logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

shows N for typical values of γ, c,

m = 100,
m

t(0)ε
= 105

� confirms trade-off in choice of µ

� in practice, #iterations is in the tens; not very sensitive for µ ≥ 10
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polynomial-time complexity of barrier method

� for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ε

))
� number of Newton iterations for fixed gap reduction is O(

√
m)

� multiply with cost of one Newton iteration (solving a linear system: cost is a
polynomial function of problem dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ fixed
(µ = 10, . . . , 20)
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Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

� f0 convex, fi : Rn → Rki, i = 1, . . . ,m, convex with respect to proper cones
Ki ∈ Rki

� fi twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

� we assume problem is strictly feasible; hence strong duality holds and dual
optimum is attained

Very useful generalization of linear programming. Examples of greatest
interest: SOCP, SDP
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Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

� domψ = intK and ∇2ψ(y) ≺ 0 for y �K 0

� ψ(sy) = ψ(y) + θ log s for y �K 0, s > 0 (θ is the degree of ψ)

examples

� nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

� positive semidefinite cone K = Sn
+:

ψ(Y ) = log detY (θ = n)

� second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)1/2 ≤ yn+1}:

ψ(y) = log(y2n+1 − y21 − · · · − y2n) (θ = 2)
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properties (without proof): for y �K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

� nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

� positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, Tr(Y∇ψ(Y )) = n

� second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)1/2 ≤ yn+1}:

ψ(y) =
2

y2n+1 − y21 − · · · − y2n


−y1

...
−yn
yn+1

 , yT∇ψ(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0:

φ(x) = −
m∑
i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki
0, i = 1, . . . ,m}

� ψi is generalized logarithm for Ki, with degree θi

� φ is convex, twice continuously differentiable

central path: {x?(t) | t > 0} where x?(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b
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Dual points on central path

x = x?(t) if there exists w ∈ Rp,

t∇f0(x) +

m∑
i=1

Dfi(x)T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

� therefore, x?(t) minimizes Lagrangian L(x, λ?(t), ν?(t)), where

λ?i (t) =
1

t
∇ψi(−fi(x?(t))), ν?(t) =

w

t

� from properties of ψi: λ
?
i (t) �K∗i

0, with duality gap

f0(x
?(t))− g(λ?(t), ν?(t)) = (1/t)

m∑
i=1

θi
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example: semidefinite programming (with Fi ∈ Sp)

minimize cTx
subject to F (x) =

∑n
i=1 xiFi +G � 0

� logarithmic barrier: φ(x) = log det(−F (x)−1)

� central path: x?(t) minimizes tcTx− log det(−F (x)); hence

tci −Tr(FiF (x?(t))−1) = 0, i = 1, . . . , n

� dual point on central path: Z?(t) = −(1/t)F (x?(t))−1 is feasible for

maximize Tr(GZ)
subject to Tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

� duality gap on central path: cTx?(t)−Tr(GZ?(t)) = p/t
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0.

repeat

1. Centering step. Compute x?(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x?(t).
3. Stopping criterion. quit if (

∑
i θi)/t < ε.

4. Increase t. t := µt.

� only difference is duality gap m/t on central path is replaced by
∑

i θi/t

� number of outer iterations: ⌈
log((

∑
i θi)/(εt

(0)))

logµ

⌉

� complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R6)

Newton iterations
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semidefinite program (100 variables, LMI constraint in S100)

Newton iterations
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family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A+ diag(x) � 0

n = 10, . . . , 1000, for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

� update primal and dual variables at each iteration; no distinction between inner
and outer iterations

� often exhibit superlinear asymptotic convergence

� search directions can be interpreted as Newton directions for modified KKT
conditions

� can start at infeasible points

� cost per iteration same as barrier method
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Interior-point methods: summary

� Interior point methods (IPM) are very reliable on small scale problems.

◦ Example: SDP of dimension 100, SOCP with less than a thousand variables.

◦ Most conic problems with a couple of hundred variables can formulated and
solved very quickly using preprocessors such as CVX.

� IPM often efficient on larger problems if KKT system has some structure
(sparsity, blocks, etc).

◦ Large scale linear programs with thousands of variables are routinely solved
by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK,
CPLEX, etc.).

◦ Much larger sparse LPs can also be solved efficiently using the same
techniques.

� Not workable for very large problems.

◦ For some problems, e.g. semidefinite programs, exploiting structure in IPM
is hard.

◦ First order methods (using the gradient only) seem to be the only option for
extremely large problems
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Semidefinite programming: CVX

Solving the maxcut relaxation

max. Tr(XC)
s.t. diag(X) = 1

X � 0,

is written as follows in CVX/MATLAB

cvx begin

. variable X(n,n) symmetric

. maximize trace(C*X)

. subject to

. diag(X)==1

. X==semidefinite(n)

cvx end
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