HW \#1

Exercises 1-4 (Convexity - duality) Do exercises 4.11, 4.26, 5.5, 5.11, 5.17 in the textbook by Boyd \& Vandenberghe.

Exercise 5 (Newton's method) Write a MATLAB function that takes a matrix $A \in \mathbf{R}^{m \times n}$ and a vector $b \in \mathbf{R}^{m}$ as inputs and returns the solution to:

$$
\min _{x \in \mathbf{R}^{n}} f(x):=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

as an output. This is called the analytic center of the linear inequalities $A x \leq b$. Use Newton's method with backtracking line search to compute the minimum with a target precision around 10^{-10}. Demonstrate your code on random examples (e.g. a random section of the unit box in \mathbf{R}^{2}) and plot the convergence to show that it exhibits quadratic convergence close to the optimum (you can use the minimum value of f you computed as a proxy for f^{\star}).

Exercise 6 (Linear programming solver) Write a MATLAB function to solve the following problem:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

Use the barrier method together with the analytic center code you wrote above to produce a matlab function that takes a feasible point as input and returns both primal and dual solutions. Write another function that computes a strictly feasible solution to $A x \leq b$ if there is one, or returns an error message if not. Check your results against those produced by CVX.

