Optimisation Combinatoire et Convexe

First Order Methods: Part II

Today

First Order Methods: Part Two.

- Centering. Solve a centering problem at each iteration and compute a subgradient at the center to localize the solution.
- Affine maximization. Solve an affine maximization problem over the feasible set.
- Partial optimization. Solve the minimization problem over a subset of the variables.

Centering: Localization Methods

Localization methods

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex (and for now, differentiable)
- problem: minimize f
- oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)

Main assumption: evaluating the gradient is very expensive.
from $f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)$ we conclude

$$
\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0 \quad \Longrightarrow \quad f(x) \geq f\left(x_{0}\right)
$$

i.e., all points in halfspace $\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0$ are worse than x_{0}

Localization methods

- by evaluating ∇f we rule out a halfspace in our search for x^{\star} :

$$
x^{\star} \in\left\{x \mid \nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \leq 0\right\}
$$

- idea: get one bit of info (on location of x^{\star}) by evaluating ∇f
- for nondifferentiable f, can replace $\nabla f\left(x_{0}\right)$ with any subgradient $g \in \partial f\left(x_{0}\right)$

Localization methods

suppose we have evaluated $\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)$ then we know $x^{\star} \in\left\{x \mid \nabla f\left(x_{i}\right)^{T}\left(x-x_{i}\right) \leq 0\right\}$

on the basis of $\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)$, we have localized x^{\star} to a polyhedron question: what is a 'good' point x_{k+1} at which to evaluate ∇f ?

Localization methods

Basic localization (or cutting-plane) algorithm:

1. after iteration $k-1$ we know $x^{\star} \in \mathcal{P}_{k-1}$:

$$
\mathcal{P}_{k-1}=\left\{x \mid \nabla f\left(x^{(i)}\right)^{T}\left(x-x^{(i)}\right) \leq 0, i=1, \ldots, k-1\right\}
$$

2. evaluate $\nabla f\left(x^{(k)}\right)$ (or $g \in \partial f\left(x^{(k)}\right)$) for some $x^{(k)} \in \mathcal{P}_{k-1}$
3. $\mathcal{P}_{k}:=\mathcal{P}_{k-1} \cap\left\{x \mid \nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) \leq 0\right\}$

Localization methods

- \mathcal{P}_{k} gives our uncertainty of x^{\star} at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $C^{(k)}$

Example: bisection on \mathbb{R}

- $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P}_{k} is interval
- obvious choice: $x^{(k+1)}:=\operatorname{midpoint}\left(\mathcal{P}_{k}\right)$

bisection algorithm

given interval $C=[l, u]$ containing x^{\star}
repeat

1. $x:=(l+u) / 2$
2. evaluate $f^{\prime}(x)$
3. if $f^{\prime}(x)<0, l:=x$; else $u:=x$

Example: bisection on \mathbb{R}

length $\left(\mathcal{P}_{k+1}\right)=u_{k+1}-l_{k+1}=\frac{u_{k}-l_{k}}{2}=(1 / 2) \operatorname{length}\left(\mathcal{P}_{k}\right)$
and so length $\left(\mathcal{P}_{k}\right)=2^{-k}$ length $\left(\mathcal{P}_{0}\right)$

Example: bisection on \mathbb{R}

interpretation:

- length $\left(\mathcal{P}_{k}\right)$ measures our uncertainty in x^{\star}
- uncertainty is halved at each iteration; get exactly one bit of info about x^{\star} per iteration
- \# steps required for uncertainty (in x^{\star}) $\leq \epsilon$:

$$
\log _{2} \frac{\text { length }\left(\mathcal{P}_{0}\right)}{\epsilon}=\log _{2} \frac{\text { initial uncertainty }}{\text { final uncertainty }}
$$

question:

- can bisection be extended to \mathbb{R}^{n} ?
- or is it special since \mathbb{R} is linear ordering?

Center of gravity algorithm

Take $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ (center of gravity)

$$
\mathrm{CG}\left(\mathcal{P}_{k}\right)=\int_{\mathcal{P}_{k}} x d x / \int_{\mathcal{P}_{k}} d x
$$

theorem. if $C \subseteq \mathbb{R}^{n}$ convex, $x_{\mathrm{cg}}=\mathrm{CG}(C), g \neq 0$,

$$
\operatorname{vol}\left(C \cap\left\{x \mid g^{T}\left(x-x_{\mathrm{cg}}\right) \leq 0\right\}\right) \leq(1-1 / e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)
$$

(independent of dimension n)
hence in CG algorithm, $\operatorname{vol}\left(\mathcal{P}_{k}\right) \leq 0.63^{k} \operatorname{vol}\left(\mathcal{P}_{0}\right)$

Center of gravity algorithm

- $\operatorname{vol}\left(\mathcal{P}_{k}\right)^{1 / n}$ measures uncertainty (in x^{\star}) at iteration k
- uncertainty reduced at least by $0.63^{1 / n}$ each iteration
- from this can prove $f\left(x^{(k)}\right) \rightarrow f\left(x^{\star}\right)$ (later)
- max. \# steps required for uncertainty $\leq \epsilon$:

$$
1.51 n \log _{2} \frac{\text { initial uncertainty }}{\text { final uncertainty }}
$$

(cf. bisection on \mathbb{R})

Center of gravity algorithm

advantages of CG-method

- guaranteed convergence
- number of steps proportional to dimension n, \log of uncertainty reduction

disadvantages

- finding $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ is harder than original problem
- \mathcal{P}_{k} becomes more complex as k increases (removing redundant constraints is harder than solving original problem)
(but, can modify CG-method to work)

Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$ is

$$
\mathrm{AC}(\mathcal{P})=\underset{z}{\operatorname{argmin}}-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)
$$

ACCPM is localization method with next query point $x^{(k+1)}=\mathrm{AC}\left(\mathcal{P}_{k}\right)$ (found by Newton's method)

Outer ellipsoid from analytic center

- let x^{*} be analytic center of $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$
- let H^{*} be Hessian of barrier at x^{*},

$$
H^{*}=-\left.\nabla^{2} \sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)\right|_{z=x^{*}}=\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(b_{i}-a_{i}^{T} x^{*}\right)^{2}}
$$

- then, $\mathcal{P} \subseteq \mathcal{E}=\left\{z \mid\left(z-x^{*}\right)^{T} H^{*}\left(z-x^{*}\right) \leq m^{2}\right\}$ (not hard to show)

Lower bound in ACCPM

- let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$
- a lower bound on optimal value p^{\star} is

$$
\begin{aligned}
p^{\star} & \geq \inf _{z \in \mathcal{E}^{(k)}}\left(f\left(x^{(k)}\right)+g^{(k) T}\left(z-x^{(k)}\right)\right) \\
& =f\left(x^{(k)}\right)-m_{k} \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}
\end{aligned}
$$

(m_{k} is number of inequalities in \mathcal{P}_{k})

- gives simple stopping criterion $\sqrt{g^{(k) T} H^{(k)-1} g^{(k)}} \leq \epsilon / m_{k}$

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and best lower bound
best function value so far: $u_{k}=\min _{i=1, \ldots, k} f\left(x^{(k)}\right)$
best lower bound so far: $l_{k}=\max _{i=1, \ldots, k} f\left(x^{(k)}\right)-m_{k} \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}$
can stop when $u_{k}-l_{k} \leq \epsilon$

Basic ACCPM

```
given polyhedron }\mathcal{P}\mathrm{ containing }\mp@subsup{x}{}{\star
repeat
    1. compute }\mp@subsup{x}{}{*}\mathrm{ , the analytic center of }\mathcal{P}\mathrm{ , and }\mp@subsup{H}{}{*
    2. compute f( (x) and g}\in\partialf(\mp@subsup{x}{}{*}
    3. }u:=\operatorname{min}{u,f(\mp@subsup{x}{}{*})
    l:= max{l, f( (x*)-m\sqrt{}{\mp@subsup{g}{}{T}\mp@subsup{H}{}{*-1}g}}
    4. add inequality g}\mp@subsup{g}{}{T}(z-\mp@subsup{x}{}{*})\leq0\mathrm{ to }\mathcal{P
until }u-l<
```

here m is number of inequalities in \mathcal{P}

Dropping constraints

ACCPM adds an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses
schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking

Dropping constraints in ACCPM

x^{*} is AC of $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}, H^{*}$ is barrier Hessian at x^{*}
define (ir)relevance measure $\eta_{i}=\frac{b_{i}-a_{i}^{T} x^{*}}{\sqrt{a_{i}^{T} H^{*-1} a_{i}}}$

- η_{i} / m is normalized distance from hyperplane $a_{i}^{T} x=b_{i}$ to outer ellipsoid
- if $\eta_{i} \geq m$, then constraint $a_{i}^{T} x \leq b_{i}$ is redundant common ACCPM constraint dropping schemes:
- drop all constraints with $\eta_{i} \geq m$ (guaranteed to not change \mathcal{P})
- drop constraints in order of irrelevance, keeping constant number, usually $3 n-$ $5 n$

Example

PWL objective, $n=10$ variables, $m=100$ terms
simple ACCPM: $f\left(x^{(k)}\right)$ and lower bound $f\left(x^{(k)}\right)-m \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}$

ACCPM with constraint dropping

ACCPM with constraint dropping

number of inequalities in \mathcal{P} :

... constraint dropping actually improves convergence (!)

The Ellipsoid Method

Challenges in cutting-plane methods:

- can be difficult to compute appropriate next query point
- localization polyhedron grows in complexity as algorithm progresses can get around these challenges . . .
ellipsoid method is another approach
- developed in 70s by Shor and Yudin
- used in 1979 by Khachian to give polynomial time algorithm for LP

Ellipsoid algorithm

idea: localize x^{\star} in an ellipsoid instead of a polyhedron

1. at iteration k we know $x^{\star} \in \mathcal{E}^{(k)}$
2. set $x^{(k+1)}:=\operatorname{center}\left(\mathcal{E}^{(k)}\right) ;$ evaluate $\nabla f\left(x^{(k+1)}\right)\left(\right.$ or $\left.g^{(k)} \in \partial f\left(x^{(k+1)}\right)\right)$
3. hence we know

$$
x^{\star} \in \mathcal{E}^{(k)} \cap\left\{z \mid \nabla f\left(x^{(k+1)}\right)^{T}\left(z-x^{(k+1)}\right) \leq 0\right\}
$$

(a half-ellipsoid)
4. set $\mathcal{E}^{(k+1)}:=$ minimum volume ellipsoid covering

$$
\mathcal{E}^{(k)} \cap\left\{z \mid \nabla f\left(x^{(k+1)}\right)^{T}\left(z-x^{(k+1)}\right) \leq 0\right\}
$$

Ellipsoid algorithm

compared to cutting-plane method:

- localization set doesn't grow more complicated
- easy to compute query point
- but, we add unnecessary points in step 4

Properties of ellipsoid method

- reduces to bisection for $n=1$
- simple formula for $\mathcal{E}^{(k+1)}$ given $\mathcal{E}^{(k)}, \nabla f\left(x^{(k+1)}\right)$
- $\mathcal{E}^{(k+1)}$ can be larger than $\mathcal{E}^{(k)}$ in diameter (max semi-axis length), but is always smaller in volume
- $\operatorname{vol}\left(\mathcal{E}^{(k+1)}\right)<e^{-\frac{1}{2 n}} \operatorname{vol}\left(\mathcal{E}^{(k)}\right)$
(note that volume reduction factor depends on n)

Example

Updating the ellipsoid

$$
\mathcal{E}(x, A)=\left\{z \mid(z-x)^{T} A^{-1}(z-x) \leq 1\right\}
$$

Updating the ellipsoid

(for $n>1$) minimum volume ellipsoid containing

$$
\mathcal{E} \cap\left\{z \mid g^{T}(z-x) \leq 0\right\}
$$

is given by

$$
\begin{aligned}
x^{+} & =x-\frac{1}{n+1} A \tilde{g} \\
A^{+} & =\frac{n^{2}}{n^{2}-1}\left(A-\frac{2}{n+1} A \tilde{g} \tilde{g}^{T} A\right)
\end{aligned}
$$

where $\tilde{g} \triangleq g / \sqrt{g^{T} A g}$

Stopping criterion

As in the ACCPM case, we can get error bounds on the current iterate.
$x^{\star} \in \mathcal{E}_{k}$, so

$$
\begin{aligned}
f\left(x^{\star}\right) & \geq f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T}\left(x^{\star}-x^{(k)}\right) \\
& \geq f\left(x^{(k)}\right)+\inf _{x \in \mathcal{E}^{(k)}} \nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) \\
& =f\left(x^{(k)}\right)-\sqrt{\nabla f\left(x^{(k)}\right)^{T} A^{(k)} \nabla f\left(x^{(k)}\right)}
\end{aligned}
$$

simple stopping criterion:

$$
\sqrt{\nabla f\left(x^{(k)}\right)^{T} A^{(k)} \nabla f\left(x^{(k)}\right)} \leq \epsilon
$$

Stopping criterion

Basic ellipsoid algorithm

ellipsoid described as $\mathcal{E}(x, A)=\left\{z \mid(z-x)^{T} A^{-1}(z-x) \leq 1\right\}$
given ellipsoid $\mathcal{E}(x, A)$ containing x^{\star}, accuracy $\epsilon>0$
repeat

1. evaluate $\nabla f(x)$ (or $g \in \partial f(x)$)
2. if $\sqrt{\nabla f(x)^{T} A \nabla f(x)} \leq \epsilon$, return (x)
3. update ellipsoid

$$
\begin{aligned}
& \text { 3a. } \tilde{g}:=\nabla f(x) / \sqrt{\nabla f(x)^{T} A \nabla f(x)} \\
& \text { 3b. } x:=x-\frac{1}{n+1} A \tilde{g} \\
& \text { 3c. } A:=\frac{n^{2}}{n^{2}-1}\left(A-\frac{2}{n+1} A \tilde{g} \tilde{g}^{T} A\right)
\end{aligned}
$$

properties:

- can propagate Cholesky factor of A; get $O\left(n^{2}\right)$ update
- not a descent method
- often slow but robust in practice

Interpretation

- change coordinates so uncertainty (\mathcal{E}) is unit ball
- take gradient (or subgradient) step with fixed length $1 /(n+1)$

properties:

- can propagate Cholesky factor of A; get $O\left(n^{2}\right)$ update
- not a descent method
- often slow but robust in practice

Proof of convergence

assumptions:

- f is Lipschitz: $|f(y)-f(x)| \leq G\|y-x\|$
- $\mathcal{E}^{(0)}$ is ball with radius R
suppose $f\left(x^{(i)}\right)>f^{\star}+\epsilon, i=0, \ldots, k$, then

$$
f(x) \leq f^{\star}+\epsilon \Longrightarrow x \in \mathcal{E}^{(k)}
$$

since at iteration i we only discard points with $f \geq f\left(x^{(i)}\right)$, then from Lipschitz condition,

$$
\left\|x-x^{\star}\right\| \leq \epsilon / G \Longrightarrow f(x) \leq f^{\star}+\epsilon \Longrightarrow x \in \mathcal{E}^{(k)}
$$

so $B=\left\{x \mid\left\|x-x^{\star}\right\| \leq \epsilon / G\right\} \subseteq \mathcal{E}^{(k)}$, hence $\operatorname{vol}(B) \leq \operatorname{vol}\left(\mathcal{E}^{(k)}\right)$, so

$$
\beta_{n}(\epsilon / G)^{n} \leq e^{-k / 2 n} \operatorname{vol}\left(\mathcal{E}^{(0)}\right)=e^{-k / 2 n} \beta_{n} R^{n}
$$

(β_{n} is volume of unit ball in \mathbb{R}^{n}), therefore $k \leq 2 n^{2} \log (R G / \epsilon$)

conclusion: for $K>2 n^{2} \log (R G / \epsilon)$,

$$
\min _{i=0, \ldots, K} f\left(x^{(i)}\right) \leq f^{\star}+\epsilon
$$

Interpretation of complexity

since $x^{\star} \in \mathcal{E}_{0}=\left\{x \mid\left\|x-x^{(0)}\right\| \leq R\right\}$, our prior knowledge of f^{\star} is

$$
f^{\star} \in\left[f\left(x^{(0)}\right)-G R, f\left(x^{(0)}\right)\right]
$$

our prior uncertainty in f^{\star} is $G R$
after k iterations our knowledge of f^{\star} is

$$
f^{\star} \in\left[\min _{i=0, \ldots, k} f\left(x^{(i)}\right)-\epsilon, \min _{i=0, \ldots, k} f\left(x^{(i)}\right)\right]
$$

posterior uncertainty in f^{\star} is $\leq \epsilon$

iterations required:

$$
2 n^{2} \log \frac{R G}{\epsilon}=2 n^{2} \log \frac{\text { prior uncertainty }}{\text { posterior uncertainty }}
$$

efficiency: $0.72 / n^{2}$ bits per gradient evaluation (degrades with n)

Inequality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

same idea: maintain ellipsoids $\mathcal{E}^{(k)}$ that

- contain x^{\star}
- decrease in volume to zero
case 1: $x^{(k)}$ feasible, i.e., $f_{i}\left(x^{(k)}\right) \leq 0, i=1, \ldots, m$
- then do usual update of $\mathcal{E}^{(k)}$ based on $\nabla f_{0}\left(x^{(k)}\right)$
- rules out halfspace of points with larger function value than current point
case 2: $x^{(k)}$ infeasible, say, $f_{j}\left(x^{(k)}\right)>0$;
- then $\nabla f_{j}\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) \geq 0 \Longrightarrow f_{j}(x)>0 \Longrightarrow x$ infeasible so update $\mathcal{E}^{(k)}$ based on $\nabla f_{j}\left(x^{(k)}\right)$
- rules out halfspace of infeasible points

Affine Maximization: Frank-Wolfe

Franke-Wolfe

- Classical first order methods for solving

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C,
\end{array}
$$

in $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex, relied on the assumption that the following subproblem could be solved efficiently

$$
\begin{array}{ll}
\operatorname{minimize} & y^{T} x+d(x) \\
\text { subject to } & x \in C,
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, where $d(x)$ is a strongly convex function.

- The method detailed here assumes instead that the affine minimization subproblem

$$
\begin{array}{ll}
\operatorname{minimize} & d^{T} x \\
\text { subject to } & x \in C
\end{array}
$$

can be solved efficiently for any $y \in \mathbb{R}^{n}$.

Franke-Wolfe

Algorithm.

- Choose $x_{0} \in C$.
- For $k=1, \ldots, k^{\max }$ iterate

1. Compute $\nabla f\left(x_{k}\right)$
2. Solve

$$
\begin{array}{ll}
\text { minimize } & x^{T} \nabla f\left(y_{k}\right) \\
\text { subject to } & x \in C
\end{array}
$$

in $x \in \mathbb{R}^{n}$, call the solution x_{d}.
3. Update the current point

$$
x_{k+1}=x_{k}+\frac{2}{k+2}\left(x_{d}-x_{k}\right)
$$

Note that all iterates are feasible.

Franke-Wolfe

- Complexity. Assume that f is differentiable. Define the curvature C_{f} of the function $f(x)$ as

$$
C_{f} \triangleq \sup _{\substack{s, x \in \mathcal{M}, \alpha \in[0,1], y=x+\alpha(s-x)}} \frac{1}{\alpha^{2}}(f(y)-f(x)-\langle y-x, \nabla f(x)\rangle) .
$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$
N_{\max }=\frac{4 C_{f}}{\epsilon}
$$

iterations.

Franke-Wolfe

- Stopping criterion. At each iteration, we get a lower bound on the optimum as a byproduct of the affine minimization step. By convexity

$$
f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{d}-x_{k}\right) \leq f(x), \quad \text { for all } x \in C
$$

and finally, calling f^{*} the optimal value of problem, we obtain

$$
f\left(x_{k}\right)-f^{*} \leq \nabla f\left(x_{k}\right)^{T}\left(x_{k}-x_{d}\right) .
$$

This allows us to bound the suboptimality of iterate at no additional cost.

Partial Minimization: Coordinate Descent

Coordinate Descent

We seek to solve

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex.

- Our main assumption here is that C is a product of simpler sets. We rewrite the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f\left(x_{1}, \ldots, x_{p}\right) \\
\text { subject to } & x_{i} \in C_{i}, \quad i=1, \ldots, p
\end{array}
$$

where $C=C_{1} \times \ldots \times C_{p}$.

- This helps if the minimization subproblems

$$
\min _{x_{i} \in C_{i}} f\left(x_{1}, \ldots, x_{i}, \ldots, x_{p}\right)
$$

can be solved very efficiently (or in closed-form).

Coordinate Descent

Algorithm. The algorithm simply computes the iterates $x^{(k+1)}$ as

$$
\begin{aligned}
x_{i}^{(k+1)} & =\underset{x_{i} \in C_{i}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, \ldots, x_{i}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{j}^{(k+1)} & =x_{j}^{(k)}, \quad j \neq i
\end{aligned}
$$

for a certain $i \in[1, p]$, cycling over all indices in $[1, p]$.

Convergence.

- Complexity analysis similar to coordinate-wise gradient descent (or steepest descent in ℓ_{1} norm).
- Need $f(x)$ strongly convex to get linear complexity bound.
- Few clean results outside of this setting.

Coordinate Descent

Example.

- Consider the box constrained minimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+b^{T} x \\
\text { subject to } & \|x\|_{\infty} \leq 1
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$. We assume $A \succ 0$.

- The set $\|x\|_{\infty} \leq 1$ is a box, i.e. a product of intervals.
- Each minimization subproblem means solving a second order equation.
- The dual is

$$
\min _{y \in \mathbb{R}^{n}}(b+y)^{T} A^{-1}(b+y)-4\|y\|_{1}
$$

which can be interpreted as a penalized regression problem in the variable $y \in \mathbb{R}^{n}$.

Partial Minimization:

Dykstra, alternating projection

Dykstra, alternating projection

We focus on a simple feasibility problem

$$
\text { find } x \in C_{1} \cap C_{2}
$$

in the variable $x \in \mathbb{R}^{n}$ with $C_{1}, C_{2} \subset \mathbb{R}^{n}$ two convex sets.

We assume now that the projection problems on C_{i} are easier to solve

$$
\begin{array}{ll}
\text { minimize } & \|x-y\|_{2} \\
\text { subject to } & x \in C_{i}
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

Dykstra, alternating projection

Algorithm (alternating projection)

- Choose $x_{0} \in \mathbb{R}^{n}$.
- For $k=1, \ldots, k^{\max }$ iterate

1. Project on C_{1}

$$
x_{k+1 / 2}=\underset{x \in C_{1}}{\operatorname{argmin}}\left\|x-x_{k}\right\|_{2}
$$

2. Project on C_{2}

$$
x_{k+1}=\underset{x \in C_{2}}{\operatorname{argmin}}\left\|x-x_{k+1 / 2}\right\|_{2}
$$

Convergence. We can show $\operatorname{dist}\left(x_{k}, C_{1} \cap C_{2}\right) \rightarrow 0$. Linear convergence provided some additional regularity assumptions.

Dykstra, alternating projection

Algorithm (Dykstra)

- Choose $x_{0}, z_{0} \in \mathbb{R}^{n}$.
- For $k=1, \ldots, k^{\text {max }}$ iterate

1. Project on C_{1}

$$
x_{k+1 / 2}=\underset{x \in C_{1}}{\operatorname{argmin}}\left\|x-z_{k}\right\|_{2}
$$

2. Update

$$
z_{k+1 / 2}=2 x_{k+1 / 2}-z_{k}
$$

3. Project on C_{2}

$$
x_{k+1}=\underset{x \in C_{2}}{\operatorname{argmin}}\left\|x-z_{k+1 / 2}\right\|_{2}
$$

4. Update

$$
z_{k+1}=z_{k}+x_{k+1}-x_{k+1 / 2}
$$

Convergence. Usually faster than simple alternating projection.

