Optimisation Combinatoire et Convexe

First Order Methods: part I

Today

First Order Methods: Part One.

- Introduction
- Exploiting structure
- Classification
- Gradient/projection based methods
- Acceleration
- Optimal complexity, resisting oracles

Introduction

Interior Point Methods, Netwon.

- Even with efficient linear algebra, exploiting structure in the KKT system computing the Newton step, the cost of one iteration becomes prohibitive.
- The dependence on the precision target is logarithmic $O(\log (1 / \epsilon))$: Newton's method produces high precision solutions, which is often unnecessary.
- Very good agreement between theoretical complexity bounds and empirical performance:
- Two convergence phases for Newton's method (damped, quadratic).
- Dimension independence: only precision improvement matters in Newton's iterations.
- Very good dependence on precision target.
- Affine invariance: immune to conditioning issues.

Unfortunately: does not scale forever. . .

Introduction

First order methods.

- Dependence on precision is polynomial $O\left(1 / \epsilon^{\alpha}\right)$, not logarithmic $O(\log (1 / \epsilon))$. This is OK in many applications (stats, etc).
- Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration.
- Lack of second order information means conditioning issues have much more impact on numerical performance.
- Much greater gap between theoretical complexity bounds and empirical performance.
- No unified analysis (self-concordance for IPM): large library of disparate methods.
- Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance \& complexity.

Introduction

First order methods. Algorithmic choices based on problem structure.

- Some optimization subproblems can be solved very efficiently (thresholding, binary search, SVD, etc).
- Classify algorithms according to these subproblems:
- Projection. Project the current iterate on a simple convex set, according to a certain norm. Iterates are mostly based on projected gradient steps.
- Centering. Solve a centering problem at each iteration and compute a subgradient at the center to localize the solution.
- Affine maximization. Solve an affine maximization problem over the feasible set.
- Partial optimization. Solve the minimization problem over a subset of the variables.
- Solving large-scale programs means solving a long sequence of these subproblems.

Gradient/projection methods

Gradient/projection methods: introduction

Solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

in $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex.

Main assumptions in the subgradient/gradient methods that follow:

- The gradient $\nabla f(x)$ or a subgradient can be computed efficiently.
- If C is not \mathbb{R}^{n}, for any $y \in \mathbb{R}^{n}$, the following subproblem can be solved efficiently

$$
\begin{array}{ll}
\operatorname{minimize} & y^{T} x+d(x) \\
\text { subject to } & x \in C
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, where $d(x)$ is a strongly convex function. Typically, $d(x)=\|x\|_{2}^{2}$ and this is an Euclidean projection.

We will always assume that C is simple enough so that this projection step can be solved efficiently.

Subgradient Methods

Subgradient. Definition.

- Suppose that f is a convex function with $\operatorname{dom} f=\mathbb{R}^{n}$, and that there is a vector $g \in \mathbb{R}^{n}$ such that:

$$
f(y) \geq f(x)+g^{T}(y-x), \quad \text { for all } y \in \mathbb{R}^{n}
$$

- The vector g is called a subgradient of f at x, we write $g \in \partial f$.
- Of course, if f is differentiable, the gradient of f at x satisfies this condition
- The subgradient defines a supporting hyperplane for f at the point x

Gradient methods

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

In theory. . .

- The theoretical convergence speed of gradient based methods is mostly controlled by the smoothness of the objective.

Convex objective $f(x)$	Iterations. . .
Nondifferentiable	$O\left(1 / \epsilon^{2}\right)$
Differentiable	$O\left(1 / \epsilon^{2}\right)$
Smooth (Lipschitz gradient)	$O(1 / \sqrt{\epsilon})$
Strongly convex	$O(\log (1 / \epsilon))$

- Obviously, the geometry of the (convex) feasible set also has an impact.

In practice. . .

- Compared to IPM, much larger gap between theoretical complexity guarantees and empirical performance.
- Conditioning, well-posedness, etc. also have a very strong impact.

Subgradient Methods

Subgradient method.

- Algorithm. At each iteration k, update the current point x_{k} according to:

$$
x_{k+1}=x_{k}+\alpha_{k} g_{k}
$$

where g_{k} is a subgradient of f at x_{k}

- α_{k} is the step size sequence
- Similar to gradient descent but, not a descent method . . .
- Instead: use the best point and the minimum function value found so far

Subgradient methods

Step size strategies:

- Constant step size: $\alpha_{k}=h$ for all $k \geq 0$
- Constant step length: $\alpha_{k} /\left\|g_{k}\right\|=h$ for all $k \geq 0$
- Square summable but not summable:

$$
\sum_{k=0}^{\infty} \alpha_{k}=\infty \quad \text { and } \quad \sum_{k=0}^{\infty} \alpha_{k}^{2}<\infty
$$

- Nonsummable diminishing:

$$
\sum_{k=0}^{\infty} \alpha_{k}=\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} \alpha_{k}=0
$$

Subgradient methods: convergence

Convergence proof. For standard gradient descent methods, convergence is based on the function value decreasing at each step. Here, the function value often increases, but the Euclidean distance to the optimal set converges.

Proposition

Subgradient method complexity. Assuming $\|g\|_{2} \leq G$, for all $g \in \partial f$, the subgradient method with step size α_{i} satisifes

$$
f_{\text {best }}-f^{\star} \leq \frac{\operatorname{dist}\left(x_{1}, x^{*}\right)^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}}
$$

Proof. We have

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} & =\left\|x^{(k)}-\alpha_{k} g^{(k)}-x^{\star}\right\|_{2}^{2} \\
& =\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-2 \alpha_{k} g^{(k) T}\left(x^{(k)}-x^{\star}\right)+\alpha_{k}^{2}\left\|g^{(k)}\right\|_{2}^{2} \\
& \leq\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{(k)}\right)-f^{\star}\right)+\alpha_{k}^{2}\left\|g^{(k)}\right\|_{2}^{2}
\end{aligned}
$$

where $f^{\star}=f\left(x^{\star}\right)$. The last line follows from the definition of subgradient, which gives

$$
f\left(x^{\star}\right) \geq f\left(x^{(k)}\right)+g^{(k) T}\left(x^{\star}-x^{(k)}\right) .
$$

Applying the inequality above recursively, we have

$$
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} \leq\left\|x^{(1)}-x^{\star}\right\|_{2}^{2}-2 \sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\sum_{i=1}^{k} \alpha_{i}^{2}\left\|g^{(i)}\right\|_{2}^{2} .
$$

Using $\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} \geq 0$ we have

$$
2 \sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq\left\|x^{(1)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} \alpha_{i}^{2}\left\|g^{(i)}\right\|_{2}^{2} .
$$

Combining this with

$$
\sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right) \geq\left(\sum_{i=1}^{k} \alpha_{i}\right) \min _{i=1, \ldots, k}\left(f\left(x^{(i)}\right)-f^{\star}\right)
$$

we have the inequality

$$
\begin{equation*}
f_{\text {best }}^{(k)}-f^{\star}=\min _{i=1, \ldots, k} f\left(x^{(i)}\right)-f^{\star} \leq \frac{\left\|x^{(1)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} \alpha_{i}^{2}\left\|g^{(i)}\right\|_{2}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \tag{1}
\end{equation*}
$$

Finally, using the assumption $\left\|g^{(k)}\right\|_{2} \leq G$, we obtain the basic inequality

$$
\begin{equation*}
f_{\mathrm{best}}^{(k)}-f^{\star}=\min _{i=1, \ldots, k} f\left(x^{(i)}\right)-f^{\star} \leq \frac{\left\|x^{(1)}-x^{\star}\right\|_{2}^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \tag{2}
\end{equation*}
$$

Since x^{\star} is any minimizer of f, we can state that

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{\operatorname{dist}\left(x^{(1)}, X^{\star}\right)^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}}
$$

Subgradient methods: convergence

Constant step size. If $\alpha_{k}=h$, we have

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{\operatorname{dist}\left(x^{(1)}, X^{\star}\right)^{2}+G^{2} h^{2} k}{2 h k}
$$

To get an ϵ solution, we set $h=2 \epsilon / G^{2}$ and

$$
\frac{\operatorname{dist}\left(x_{1}, X^{\star}\right)^{2}}{2 h k} \leq \epsilon
$$

hence the following bound on the number of iterations

$$
k \geq \frac{\operatorname{dist}\left(x_{1}, X^{\star}\right)^{2} G^{2}}{4 \epsilon^{2}} .
$$

Subgradient methods: convergence

Square summable but not summable. Now suppose

$$
\|\alpha\|_{2}^{2}=\sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty .
$$

Then we have

$$
f_{\text {best }}^{(k)}-f^{\star} \leq \frac{\operatorname{dist}\left(x^{(1)}, X^{\star}\right)^{2}+G^{2}\|\alpha\|_{2}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}},
$$

which converges to zero as $k \rightarrow \infty$. In other words, the subgradient method converges (in the sense $f_{\text {best }}^{(k)} \rightarrow f^{\star}$).

Subgradient Methods

If the problem has constraints:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

where $C \subset \mathbb{R}^{n}$ is a convex set

- Use the Euclidean projection $p_{C}(\cdot)$

$$
x_{k+1}=p_{C}\left(x_{k}+\alpha_{k} g_{k}\right)
$$

- Similar complexity analysis
- Some numerical examples on piecewise linear minimization. . . Problem instance with $n=10$ variables, $m=100$ terms
"In theory, there is no difference between theory and practice. In practice, there is..."

Subgradient Methods: Numerical Examples

Constant step length, $h=0.05,0.02,0.005$

Subgradient Methods: Numerical Examples

Constant step size $h=0.05,0.02,0.005$

Subgradient Methods: Numerical Examples

Diminishing step rule $\alpha=0.1 / \sqrt{k}$ and square summable step size rule $\alpha=0.1 / k$.

Subgradient Methods: Numerical Examples

Constant step length $h=0.02$, diminishing step size rule $\alpha=0.1 / \sqrt{k}$, and square summable step rule $\alpha=0.1 / k$

Accelerated Gradient Methods

Accelerated Gradient Methods

Solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

in $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex.

- Additional smoothness assumption: the gradient is Lipschitz continuous

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| \quad \text { for all } x, y \in C
$$

where $\|\cdot\|$ is a norm.

- We will also study the case where the function is strongly convex, i.e. there exists $\mu>0$

$$
f(y) \geq f(x)+(y-x)^{T} \nabla f(x)+\frac{\mu}{2}\|y-x\|^{2} \quad \text { for all } x, y \in C
$$

where $\|\cdot\|$ is a norm. But acceleration works even when $\sigma=0$.

Accelerated Gradient Methods

The fact that the gradient $\nabla f(x)$ is Lipschitz continuous

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| \quad \text { for all } x, y \in C
$$

has important algorithmic consequences:

- For any $x, y \in \mathbb{R}^{n}$,

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|^{2}
$$

and we get a quadratic upper bound on the function $f(x)$.

- This means in particular that if $y=x-\frac{1}{L} \nabla f(x)$, then

$$
f(y) \leq f(x)-\frac{1}{2 L}\|\nabla f(x)\|^{2}
$$

and we get a guaranteed decrease in the function value at each gradient step.

Accelerated Gradient Methods

Suppose we seek to solve

$$
\min f(x)
$$

over $x \in \mathbb{R}^{n}$, assuming $\nabla f(x)$ is Lipschitz continuous with constant L.
Consider the following method (due to Adrien Taylor), based on [Nesterov, 1983].

For $k=1, \ldots, k^{\max }$ iterate

1. Set $y_{k+1}=\left(1-\tau_{k}\right) y_{k}+\tau_{k} z_{k}-\alpha_{k} \nabla f\left(y_{k}\right)$.
2. Set $z_{k+1}=z_{k}-\gamma_{k} \nabla f\left(y_{+1} k\right)$.
where the parameters are set using the value of a time varying sequence A_{k}

$$
\tau_{k}=\frac{A_{k+1}-A_{k}}{A_{k+1}}, \alpha_{k}=\frac{A_{k}}{L A_{k+1}}, \gamma_{k}=\frac{A_{k+1}-A_{k}}{L} .
$$

Accelerated Gradient Methods

Theorem

Convergence. Let f be L-smooth and convex. For all values $A_{k} \geq 0$ the iterates satisfy

$$
A_{k+1}\left(f\left(y_{k+1}\right)-f\left(x_{\star}\right)\right)+\frac{L}{2}\left\|z_{k+1}-x_{\star}\right\|^{2} \leq A_{k}\left(f\left(y_{k}\right)-f\left(x_{\star}\right)\right)+\frac{L}{2}\left\|z_{k}-x_{\star}\right\|^{2}
$$

if A_{k} is monotonically increasing and $A_{k+1}-\left(A_{k}-A_{k+1}\right)^{2} \geq 0$.
Proof. Perform a weighted sum of the following inequalities:
■ smoothness and convexity between x_{\star} and y_{k+1} with weight $\lambda_{1}=A_{k+1}-A_{k}$

$$
f\left(x_{\star}\right) \geq f\left(y_{k+1}\right)+\left\langle\nabla f\left(y_{k+1}\right) ; x_{\star}-y_{k+1}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(y_{k+1}\right)\right\|^{2}
$$

- smoothness and convexity between y_{k} and y_{k+1} with weight $\lambda_{2}=A_{k}$

$$
f\left(y_{k}\right) \geq f\left(y_{k+1}\right)+\left\langle\nabla f\left(y_{k+1}\right) ; y_{k}-y_{k+1}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(y_{k+1}\right)-\nabla f\left(y_{k}\right)\right\|^{2}
$$

The weighted sum can be written as

$$
\begin{aligned}
0 \geq & \lambda_{1}\left[f\left(y_{k+1}\right)-f\left(x_{\star}\right)+\left\langle\nabla f\left(y_{k+1}\right) ; x_{\star}-y_{k+1}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(y_{k+1}\right)\right\|^{2}\right] \\
& +\lambda_{2}\left[f\left(y_{k+1}\right)-f\left(y_{k}\right)+\left\langle\nabla f\left(y_{k+1}\right) ; y_{k}-y_{k+1}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(y_{k+1}\right)-\nabla f\left(y_{k}\right)\right\|^{2}\right]
\end{aligned}
$$

which is equivalently formulated as

$$
\begin{aligned}
& A_{k+1}\left(f\left(y_{k+1}\right)-f\left(x_{\star}\right)\right)+\frac{L}{2}\left\|z_{k+1}-x_{\star}\right\|^{2} \\
\leq & A_{k}\left(f\left(y_{k}\right)-f\left(x_{\star}\right)\right)+\frac{L}{2}\left\|z_{k}-x_{\star}\right\|^{2}-\frac{A_{k}}{2 L}\left\|\nabla f\left(y_{k}\right)\right\|^{2} \\
& -\frac{A_{k+1}-\left(A_{k+1}-A_{k}\right)^{2}}{2 L}\left\|\nabla f\left(y_{k+1}\right)\right\|^{2} .
\end{aligned}
$$

Therefore, we reach the desired statement as soon as we can remove the last two terms. This means $A_{k} \geq 0$ and $A_{k+1}-\left(A_{k+1}-A_{k}\right)^{2} \geq 0$ (both verified by assumptions). The choice $A_{k+1}=A_{k}+\frac{1+\sqrt{4 A_{k}+1}}{2}$ allows satisfying $A_{k+1}-\left(A_{k+1}-A_{k}\right)^{2}=0$ with the largest possible value of A_{k+1}.

Accelerated Gradient Methods

We get the following result, with a convergence rate of $O\left(1 / k^{2}\right)$.

Theorem

Complexity. After k iterations, we obtain points y_{k} and z_{k} satisfying

$$
f\left(y_{k}\right)-f\left(x_{\star}\right) \leq \frac{L\left\|z_{0}-x_{\star}\right\|^{2}}{k^{2}} .
$$

Proof. We can pick $A_{k}=k^{2} / 2$ which satisfies $A_{k+1}-\left(A_{k}-A_{k+1}\right)^{2} \geq 0$ and, together with the previous theorem, yields the bound above.

Accelerated Gradient Methods

The choice of norm has a significant impact on complexity. Consider

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

- Euclidean. Pick $d(x)=\|x\|_{2}^{2} / 2$, strongly convex with $\sigma=1$ w.r.t. the Euclidean norm

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 L_{2}\left\|x^{*}\right\|_{2}^{2}}{(k+1)^{2}}
$$

where L_{2} is such that $\|\nabla f(x)-\nabla f(y)\|_{2} \leq L_{2}\|x-y\|_{2}$, for all $x, y \in C$.

- Entropy. Pick $d(x)=\sum_{i=1}^{n} x_{i} \log x_{i}$, strongly convex with $\sigma=1$ w.r.t. the $\|.\|_{1}$ norm

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 L_{\infty} d\left(x^{*}\right)}{(k+1)^{2}}
$$

where L_{e} is such that $\|\nabla f(x)-\nabla f(y)\|_{\infty} \leq L_{\infty}\|x-y\|_{1}$, for all $x, y \in C$.
Because $\|\cdot\|_{\infty} \leq\|\cdot\|_{2} \leq\|\cdot\|_{1}$, we always have $L_{\infty} \leq L_{2}$.

Accelerated Gradient Methods: optimality

Accelerated gradient methods. Can we do better than $O(1 / \sqrt{\epsilon})$?

Problem class. $f(x)$ has a Lipschitz continuous gradient with constant L. At each iteration, we get a black-box gradient oracle, and we look for a solution satisfying $f(x)-f^{*} \leq \epsilon$

If we know nothing about $f(x)$ except its gradient at certain points and its gradient Lipschitz constant L.

- We need at least $O\left(\left\|x_{0}-x^{*}\right\|_{2} \sqrt{L / \epsilon}\right)$ iterations.
- We can construct an explicit quadratic function reaching this bounds, which is hard for all schemes.

Accelerated Gradient Methods: optimality

Definition

Iterative method. We will assume that an iterative method generates a sequence of points y_{k} such that

$$
y_{k} \in \mathcal{L}_{k} \triangleq y_{0}+\operatorname{span}\left\{\nabla f\left(y_{0}\right), \nabla f\left(y_{1}\right), \ldots, \nabla f\left(y_{k-1}\right)\right\}
$$

This can be relaxed, but simplifies analysis and covers most classical algorithms.

Accelerated Gradient Methods: optimality

Proof structure.

- Design a set of (quadratic) functions $f_{n}(x)$ whose gradients at sparse points have only one more nonzero coefficient.
- Without loss of generality, we can always start at $y_{0}=0$.

■ Starting at $y_{0}=0$, any iterate y_{k} will have at most cardinality k, whatever the algorithm.

- These iterates poorly approximate the optimum, which has cardinality n.

Accelerated Gradient Methods: optimality

We write $S_{k, n} \triangleq\left\{x \in \mathbb{R}^{n}: x_{i}=0, i=k+1, \ldots, n\right\}$.

Lemma

Worst function in class. [Nesterov, 2003, §2.1.2] Define

$$
f_{k}(x) \triangleq \frac{L}{8}\left(x_{1}^{2}+\sum_{i=1}^{k-1}\left(x_{i}-x_{i+1}\right)^{2}+x_{k}^{2}-2 x_{1}\right)
$$

then for any sequence $y_{i} \in \mathbb{R}^{n}, i=0, \ldots, p$, such that

$$
y_{k} \in \mathcal{L}_{k} \triangleq y_{0}+\operatorname{span}\left\{\nabla f_{p}\left(y_{0}\right), \nabla f_{p}\left(y_{1}\right), \ldots, \nabla f_{p}\left(y_{k-1}\right)\right\}
$$

we have $y_{k} \in S_{k, n}$.

Proof. We can write

$$
\begin{aligned}
0 & \leq \frac{L}{4}\left(s_{1}^{2}+\sum_{i=1}^{k-1}\left(s_{i}-s_{i+1}\right)^{2}+s_{k}^{2}\right) \\
& \leq s^{T} \nabla^{2} f(x) s \\
& \leq \frac{L}{4}\left(s_{1}^{2}+\sum_{i=1}^{k-1} 2\left(s_{i}^{2}+s_{i+1}^{2}\right)+s_{k}^{2}\right) \leq L \sum_{i=1}^{n} s_{i}^{2}
\end{aligned}
$$

which means $0 \preceq \nabla^{2} f_{k}(x) \preceq L \mathbf{I}_{n}$, hence $\nabla f_{k}(x)$ is Lipschitz continuous with constant L, because $\nabla^{2} f_{k}(x)=\frac{L}{4} A_{k}$ with

$$
A_{k}=\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right) \quad \text { where } \quad B_{k}=\left(\begin{array}{cccc}
2 & -1 & \cdots & 0 \\
-1 & 2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
0 & \cdots & -1 & 2
\end{array}\right)
$$

where A_{k} is block tridiagonal with an upper left block of dimension $B_{k} \in \mathbf{S}_{k}$. By induction now, $\nabla f_{p}\left(x_{0}\right)=(L / 4) e_{1} \in S_{1, n}$ and assuming $y \in S_{k, n}$, then $\nabla f_{p}(y)=(L / 2)\left(A_{k} y-e_{1}\right) \in S_{k+1, n}$ because A_{k} is tridiagonal.

Accelerated Gradient Methods: optimality

Theorem

Worst-case complexity. For any $1 \leq k \leq(n-1) / 2$, there exists a function $f(X)$ with $\nabla f(x)$ L-Lipschitz continuous, such that for any iterative method (cf. above) we have

$$
f\left(y_{k}\right)-f^{*} \geq \frac{3 L\left\|y_{0}-y^{*}\right\|^{2}}{32(k+1)^{2}}
$$

and

$$
\left\|y_{k}-y^{*}\right\|^{2} \geq \frac{1}{8}\left\|y_{0}-y^{*}\right\|^{2}
$$

Proof. Without loss of generality, we can assume that $y_{0}=0$, otherwise we simply shift the function without changing its nature. We will apply an iterative method to the function $f(x) \triangleq f_{2 k+1}(x)$. Let us first note that the minimizer of $f(x)$, solving

$$
\nabla f_{k}(x)=A_{k} x-e_{1}=0
$$

is given by

$$
y^{*}= \begin{cases}1-\frac{i}{2 k+1}, & i=1, \ldots, 2 k+1 \\ 0 & i=k+1, \ldots, n\end{cases}
$$

and

$$
\begin{equation*}
f_{2 k+1}^{*}=\frac{L}{8}\left(\frac{1}{2 k+2}-1\right) . \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y^{*}\right\|^{2}=\sum_{i=1}^{2 k+1}\left(1-\frac{i}{2 k+1}\right)^{2} \leq \frac{1}{3}(2 k+2) \tag{4}
\end{equation*}
$$

using

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2} \quad \text { and } \quad \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6} \leq \frac{(k+1)^{3}}{3}
$$

From the form of $f_{p}(x)$ we have $f_{p}(x)=f_{k}(x)$ whenever $x \in S_{k, n}$ and $p \geq k$, hence in particular,

$$
f\left(y_{k}\right) \triangleq f_{2 k+1}\left(y_{k}\right)=f_{k}\left(y_{k}\right) \geq f^{*}=\frac{L}{8}\left(\frac{1}{k+1}-1\right)
$$

in view of (3) and (4), with $y_{0}=0, f^{*} \triangleq f_{2 k+1}^{*}$ we get

$$
\frac{f\left(y_{k}\right)-f^{*}}{\left\|y_{0}-y^{*}\right\|^{2}} \geq \frac{\frac{L}{8}\left(-1+\frac{1}{k+1}+1-\frac{1}{2 k+2}\right)}{(2 k+2) / 3}=\frac{3 L}{32(k+1)^{2}}
$$

which is the first inequality. Since $y_{k} \in S_{k, n}$ we have

$$
\left\|y_{k}-y^{*}\right\|^{2} \geq \sum_{i=k+1}^{2 k+1}\left(\bar{y}_{2 k+1, i}^{*}\right)^{2}=\sum_{i=k+1}^{2 k+1}\left(1-\frac{i}{2 k+2}\right)^{2}
$$

hence, with $y_{0}=0$ and using again (4)

$$
\begin{aligned}
\left\|y_{k}-y^{*}\right\|^{2} & \geq \frac{2 k^{2}+7 k+6}{24 k+1} \\
& \geq \frac{2 k^{2}+7 k+6}{16(k+1)^{2}}\left\|y_{0}-\bar{y}_{2 k+1}^{*}\right\|^{2} \\
& \geq \frac{1}{8}\left\|y_{0}-\bar{y}_{2 k+1}^{*}\right\|^{2}
\end{aligned}
$$

because

$$
\frac{2 k^{2}+7 k+6}{16(k+1)^{2}} \geq \frac{1}{8}\left\|y_{0}-\bar{y}^{*}\right\|^{2}
$$

for all $k \geq 0$ and $y^{*} \triangleq \bar{y}_{2 k+1}^{*}$.

Gradient/projection methods

for stochastic problems

Stochastic Optimization

Solve

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(x) \triangleq \mathbf{E}[f(x, \xi)] \\
\text { subject to } & x \in C
\end{array}
$$

in $x \in \mathbb{R}^{n}$, where C is a simple convex set. The key difference here is that the function we are minimizing is stochastic.

- Batch method. A simple option is to approximate the problem by

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} f\left(x, \xi_{m}\right) \\
\text { subject to } & x \in C,
\end{array}
$$

where ξ_{i} are sampled from the distribution of ξ.

- Sampling is costly, the full batch is heavy, we can do better. . .

Stochastic Optimization

Assume we have an unbiased estimate $g(x, \xi)$ of the subgradient of $\phi(x)$, i.e.

- $\mathbf{E}[g(x, \xi) \mid x]=g(x) \in \partial \phi(x)$
- In particular

$$
\phi(y) \geq \phi(x)+g(x)^{T}(y-x)
$$

Stochastic Optimization

Let $p_{C}(\cdot)$ be the Euclidean projection operator on C.

Algorithm (Robust stochastic averaging)

- Choose $x_{0} \in C$ and a step sequence $\gamma_{j}>0$.
- For $k=1, \ldots, k^{\max }$ iterate

1. Compute a subgradient

$$
g \in \partial f\left(x_{k}, \xi_{k}\right)
$$

2. Update the current point

$$
x_{k+1}=p_{C}\left(x_{k}-h_{k} g\right)
$$

3. Compute

$$
\bar{x}=\frac{\sum_{k=0}^{N-1} h_{k} x_{k}}{\sum_{k=0}^{N-1} h_{k}}
$$

Stochastic Optimization

Convergence proof.

Theorem

Complexity. Suppose $\left\|x^{\star}-x_{0}\right\| \leq R$ for some $x_{0} \in C$, and $\mathbf{E}\left[\|g\|_{2}^{2}\right] \leq L^{2}$, then

$$
\mathbf{E}[f(\bar{x})]-\min _{x \in C} \mathbf{E}[f(x, \xi)] \leq \frac{R^{2}+L^{2} \sum_{k=0}^{N-1} h_{k}^{2}}{2 \sum_{k=0}^{N-1} h_{k}}
$$

Proof. Let x^{*} be an optimal solution and define $r_{k}=\left\|x^{*}-x_{k}\right\|$. Since x_{k+1} is the projection of $x_{k}-h_{k} g_{k}$ over C, it satisfies

$$
\begin{aligned}
r_{k+1}^{2} & \leq\left\|x_{k}-h_{k} g_{k}-x^{*}\right\|^{2} \\
& =r_{k}^{2}-2 h_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle+h_{k}^{2}\left\|g_{k}\right\|^{2}
\end{aligned}
$$

because x_{k+1} must be closer to $x^{*} \in C$ than $x_{k}-h_{k} g_{k}$.

Taking expectations, we get, by convexity and because ξ_{k} and x_{k} are independent.

$$
\begin{aligned}
\mathbf{E}\left[r_{k+1}^{2}\right] & \leq \mathbf{E}\left[r_{k}^{2}\right]-2 h_{k} \mathbf{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right]+h_{k}^{2} \mathbf{E}\left[\left\|g_{k}\right\|^{2}\right] \\
& \leq \mathbf{E}\left[r_{k}^{2}\right]-2 h_{k} \mathbf{E}\left[\left\langle\mathbf{E}\left[g_{k} \mid x_{k}\right], x_{k}-x^{*}\right\rangle\right]+h_{k}^{2} L^{2} \\
& \leq \mathbf{E}\left[r_{k}^{2}\right]-2 h_{k}\left(\mathbf{E}\left[\phi\left(x_{k}\right)\right]-\phi\left(x^{*}\right)\right)+h_{k}^{2} L^{2}
\end{aligned}
$$

Summing all these inequalities and using the convexity of $\phi(\cdot)$, we finally get

$$
\begin{aligned}
r_{0}^{2}+L^{2} \sum_{k=0}^{N-1} h_{k}^{2} & \leq \sum_{k=0}^{N-1} h_{k}\left(\mathbf{E}\left[\phi\left(x_{k}\right)\right]-\phi\left(x^{*}\right)\right) \\
& \leq 2\left(\sum_{k=0}^{N-1} h_{k}\right)\left(\mathbf{E}[\phi(\bar{x})]-\phi\left(x^{*}\right)\right)
\end{aligned}
$$

hence the desired result.

Stochastic Optimization

Complexity.

- If we set $h_{k}=R /(L \sqrt{N})$, we have

$$
\mathbf{E}\left[f(\bar{x})-f^{*}\right] \leq \frac{L R}{\sqrt{N}}
$$

- Furthermore, if we assume

$$
\mathbf{E}\left[\exp \left(\frac{\|g\|_{2}^{2}}{L^{2}}\right)\right] \leq e, \quad \text { for all } g \in \partial f\left(x_{k}, \xi\right) \text { and } x \in C
$$

we get

$$
\operatorname{Prob}\left[\phi\left(\tilde{x}_{k}\right)-\phi^{*} \geq \frac{L R}{\sqrt{N}}(12+2 t)\right] \leq 2 \exp (-t) .
$$

References
Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2): 372-376, 1983.
Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.

