## **Optimisation Combinatoire et Convexe.**

Introduction, convexité, dualité.

- Convex optimization: introduction
- Course organization and other gory details...
- Convex optimization: basic concepts

# **Convex Optimization**

### **Convex optimization**

minimize 
$$f_0(x)$$
  
subject to  $f_1(x) \le 0, \dots, f_m(x) \le 0$ 

 $x \in \mathbb{R}^n$  is optimization variable;  $f_i : \mathbb{R}^n \to \mathbb{R}$  are **convex**:

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

for all x, y,  $0 \le \lambda \le 1$ 

- This template includes LS, LP, QP, and many others.
- **Good news:** convex problems (LP, QP, etc) are **fundamentally tractable**.
- **Bad news:** this is an exception, most nonconvex are **completely intractable**.

A brief history. . .

- The field is about 50 years old.
- Starts with the work of Von Neumann, Kuhn and Tucker, etc.
- Explodes in the 60's with the advent of "relatively" cheap and efficient computers. . .
- Key to all this: fast linear algebra
- Some of the theory developed before computers even existed. . .

- Historical view: nonlinear problems are hard, linear ones are easy.
- In reality: **Convexity** ⇒ low complexity
  - "... In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." **T. Rockafellar**.
- True: Nemirovskii and Yudin [1979].
- Very true: Karmarkar [1984].
- Seriously true: convex programming, Nesterov and Nemirovskii [1994].

- All convex minimization problems with: a first order oracle (returning f(x) and a subgradient) can be solved in polynomial time in size and number of precision digits.
- Proved using the ellipsoid method by Nemirovskii and Yudin [1979].
- Very slow convergence in practice.

- Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases.
- Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP.
- Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods.

- Nesterov and Nemirovskii [1994] show that the interior point methods (IPM) used for LPs can be applied to a larger class of structured convex problems.
- The self-concordance analysis that they introduce extends the polynomial time complexity proof for LPs.
- Most operations that preserve convexity also preserve self-concordance.

#### Interior point methods.

- IPM essentially solved once and for all a broad range of medium-scale convex programs.
- For large-scale problems, computing a single Newton step is often too expensive

### First order methods.

- Dependence on precision is polynomial  $O(1/\epsilon^{\alpha})$ , not logarithmic  $O(\log(1/\epsilon))$ . This is OK in many applications (stats, etc).
- Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration.
- No unified analysis (self-concordance for IPM): large library of disparate methods.
- Algorithmic choices strictly constrained by problem structure.

**Objective:** classify these techniques, study their performance & complexity.

### Symmetric cone programs

An important particular case: linear programming on symmetric cones

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax - b \in \mathcal{K} \end{array}$ 

These include the LP, second-order (Lorentz) and semidefinite cone:

LP: 
$$\{x \in \mathbb{R}^n : x \ge 0\}$$
  
Second order:  $\{(x, y) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \le y\}$   
Semidefinite:  $\{X \in \mathbf{S}^n : X \succeq 0\}$ 

Broad class of problems can be represented in this way.

**Good news:** Fast, reliable, open-source solvers available (SDPT3, CVX, etc).

This course will describe some "exotic" applications of these programs.

Beyond convexity. . .

- **Hidden convexity.** Convex programs solving nonconvex problems (S-lemma).
- Approximation results. Approximating combinatorial problems by convex programs.
  - $\circ$  Approximate  $\mathcal S\text{-lemma}.$
  - Approximation ratio for MaxCut, etc.
- **Recovery results on**  $\ell_1$  **penalties.** Finding sparse solutions to optimization problems using convex penalties.
  - Sparse signal reconstruction.
  - Matrix completion (collaborative filtering, NETFLIX, etc.).

# **Course Organization**

- Fundamental definitions
  - $\circ\,$  A brief primer on convexity and duality theory
- Algorithmic complexity
  - Interior point methods, self-concordance.
  - First order algorithms: complexity and classification.
- Modern applications
  - $\circ$  Statistics
  - Geometrical problems, graphs.
  - 0 •••
- Some "miracles": approximation, asymptotic and hidden convexity results
  - Measure concentration results.
  - $\circ~\mathcal{S}\text{-lemma}$ , MaxCut, low rank SDP solutions, nonconvex QCQP, etc.
  - High dimensional geometry
  - $\circ~\ell_1$  recovery, matrix completion, convex deconvolution, etc.

• Course website with lecture notes, homework, etc.

http://www.di.ens.fr/~aspremon/

• A final exam.

- Contact info on http://www.di.ens.fr/~aspremon/
- Email: aspremon@ens.fr
- Dual PhDs: Ecole Polytechnique & Stanford University
- Interests: Optimization, machine learning, statistics & finance.

All lecture notes will be posted online, none of the books below are required.

- Nesterov [2003], "Introductory Lectures on Convex Optimization", Springer.
- "Convex Optimization" by Lieven Vandenberghe and Stephen Boyd, available online at:

http://www.stanford.edu/~boyd/cvxbook/

See also Ben-Tal and Nemirovski [2001], "Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications", SIAM.

http://www2.isye.gatech.edu/~nemirovs/

 Nesterov and Nemirovskii [1994], "Interior Point Polynomial Algorithms in Convex Programming", SIAM.

## **Convex Sets**

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

### **Convex set**

**line segment** between  $x_1$  and  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with  $0 \le \theta \le 1$ 

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)



### **Convex combination and convex hull**

**convex combination** of  $x_1, \ldots, x_k$ : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with  $\theta_1 + \cdots + \theta_k = 1$ ,  $\theta_i \ge 0$ 

**convex hull**  $\mathbf{Co}S$ : set of all convex combinations of points in S



### Hyperplanes and halfspaces

**hyperplane**: set of the form  $\{x \mid a^T x = b\}$   $(a \neq 0)$ 



**halfspace:** set of the form  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 



- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

### **Euclidean balls and ellipsoids**

• (Euclidean) ball with center  $x_c$  and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

**Ellipsoid:** set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with  $P \in \mathbf{S}_{++}^n$  (*i.e.*, P symmetric positive definite)



other representation:  $\{x_c + Au \mid ||u||_2 \leq 1\}$ , with A square and nonsingular.

- Representation impacts problem formulation & complexity.
- Idem for polytopes, with polynomial number of vertices, exponential number of facets, and vice-versa.

## Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})$ 



polyhedron is intersection of finite number of halfspaces and hyperplanes

### **Positive semidefinite cone**

### notation:

- **S**<sup>n</sup> is set of symmetric  $n \times n$  matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$ : positive semidefinite  $n \times n$  matrices

$$X \in \mathbf{S}^n_+ \quad \Longleftrightarrow \quad z^T X z \ge 0 \text{ for all } z$$

 $\mathbf{S}_{+}^{n}$  is a convex cone

•  $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$ : positive definite  $n \times n$  matrices



## **Operations that preserve convexity**

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . . ) by operations that preserve convexity
  - intersection
  - affine functions
  - perspective function
  - linear-fractional functions

### Intersection

the intersection of (any number of) convex sets is convex

#### example:

$$S = \{ x \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where  $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$ 

for m = 2:



## **Affine function**

suppose  $f : \mathbb{R}^n \to \mathbb{R}^m$  is affine  $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$ 

• the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

• the inverse image  $f^{-1}(C)$  of a convex set under f is convex

$$C \subseteq \mathbb{R}^m$$
 convex  $\implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\}$  convex

#### examples

- scaling, translation, projection
- solution set of linear matrix inequality  $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with  $A_i, B \in \mathbf{S}^p$ )
- hyperbolic cone  $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$  (with  $P \in \mathbf{S}^n_+$ )

#### A. d'Aspremont. M1 ENS.

### **Perspective and linear-fractional function**

perspective function  $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$ :

$$P(x,t) = x/t,$$
 dom  $P = \{(x,t) \mid t > 0\}$ 

images and inverse images of convex sets under perspective are convex

linear-fractional function  $f : \mathbb{R}^n \to \mathbb{R}^m$ :

$$f(x) = \frac{Ax+b}{c^T x+d}, \quad \text{dom} f = \{x \mid c^T x+d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

### **Generalized inequalities**

a convex cone  $K \subseteq \mathbb{R}^n$  is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

### examples

- nonnegative orthant  $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone  $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{ x \in \mathbb{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

**generalized inequality** defined by a proper cone K:

$$x \preceq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \operatorname{int} K$$

#### examples

• componentwise inequality  $(K = \mathbb{R}^n_+)$ 

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \le y_i, \quad i = 1, \dots, n$$

• matrix inequality  $(K = \mathbf{S}_{+}^{n})$ 

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in  $\preceq_K$ **properties:** many properties of  $\preceq_K$  are similar to  $\leq$  on  $\mathbb{R}$ , *e.g.*,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

#### A. d'Aspremont. M1 ENS.

### Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists  $a \neq 0$ , b such that

$$a^T x \leq b$$
 for  $x \in C$ ,  $a^T x \geq b$  for  $x \in D$ 



the hyperplane  $\{x \mid a^T x = b\}$  separates C and D

Classical result. Proof relies on minimizing distance between set, and using the argmin to explicitly produce separating hyperplane.

## Supporting hyperplane theorem

supporting hyperplane to set C at boundary point  $x_0$ :

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$  and  $a^T x \leq a^T x_0$  for all  $x \in C$ 



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

### **Dual cones and generalized inequalities**

**dual cone** of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbb{R}^n_+$ :  $K^* = \mathbb{R}^n_+$
- $K = \mathbf{S}_+^n$ :  $K^* = \mathbf{S}_+^n$
- $K = \{(x,t) \mid ||x||_2 \le t\}$ :  $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$ :  $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

#### first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

#### A. d'Aspremont. M1 ENS.

# **Convex Functions**

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- Iog-concave and log-convex functions
- convexity with respect to generalized inequalities
## Definition

 $f:\mathbb{R}^n\to\mathbb{R}$  is convex if  $\operatorname{\mathbf{dom}} f$  is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all  $x, y \in \operatorname{\mathbf{dom}} f$ ,  $0 \le \theta \le 1$ 



- f is concave if -f is convex
- f is strictly convex if  $\mathbf{dom} f$  is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for  $x,y\in \operatorname{\mathbf{dom}} f$  ,  $x\neq y$  ,  $0<\theta<1$ 

## Examples on ${\mathbb R}$

convex:

- affine: ax + b on  $\mathbb{R}$ , for any  $a, b \in \mathbb{R}$
- exponential:  $e^{ax}$ , for any  $a \in \mathbb{R}$
- powers:  $x^{\alpha}$  on  $\mathbb{R}_{++}$ , for  $\alpha \geq 1$  or  $\alpha \leq 0$
- powers of absolute value:  $|x|^p$  on  $\mathbb{R}$ , for  $p \ge 1$
- negative entropy:  $x \log x$  on  $\mathbb{R}_{++}$

concave:

- affine: ax + b on  $\mathbb{R}$ , for any  $a, b \in \mathbb{R}$
- powers:  $x^{\alpha}$  on  $\mathbb{R}_{++}$ , for  $0 \leq \alpha \leq 1$
- logarithm:  $\log x$  on  $\mathbb{R}_{++}$

## Examples on $\mathbb{R}^n$ and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

#### examples on $\mathbb{R}^n$

- affine function  $f(x) = a^T x + b$
- norms:  $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$  for  $p \ge 1$ ;  $||x||_{\infty} = \max_k |x_k|$

examples on  $\mathbb{R}^{m \times n}$  ( $m \times n$  matrices)

affine function

$$f(X) = \mathbf{Tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

## Restriction of a convex function to a line

 $f: \mathbb{R}^n \to \mathbb{R}$  is convex if and only if the function  $g: \mathbb{R} \to \mathbb{R}$ ,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any  $x \in \operatorname{\mathbf{dom}} f$ ,  $v \in \mathbb{R}^n$ 

can check convexity of f by checking convexity of functions of one variable

example.  $f : \mathbf{S}^n \to \mathbb{R}$  with  $f(X) = \log \det X$ ,  $\operatorname{dom} X = \mathbf{S}_{++}^n$ 

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$
  
=  $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$ 

where  $\lambda_i$  are the eigenvalues of  $X^{-1/2}VX^{-1/2}$ 

g is concave in t (for any choice of  $X \succ 0$ , V); hence f is concave

## **Extended-value extension**

extended-value extension  $\tilde{f}$  of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in  $\mathbb{R} \cup \{\infty\}$ ), means the same as the two conditions

- **dom** *f* is convex
- for  $x,y\in \operatorname{\mathbf{dom}} f$  ,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

## **First-order condition**

f is **differentiable** if  $\mathbf{dom} f$  is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**1st-order condition:** differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all  $x, y \in \operatorname{dom} f$ 



first-order approximation of f is global underestimator

## **Second-order conditions**

f is twice differentiable if dom f is open and the Hessian  $\nabla^2 f(x) \in \mathbf{S}^n$ ,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**2nd-order conditions:** for twice differentiable f with convex domain

• *f* is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all  $x \in \operatorname{\mathbf{dom}} f$ 

• if  $\nabla^2 f(x) \succ 0$  for all  $x \in \operatorname{dom} f$ , then f is strictly convex

## **Examples**

quadratic function:  $f(x) = (1/2)x^T P x + q^T x + r$  (with  $P \in \mathbf{S}^n$ )

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if  $P \succeq 0$ 

least-squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear:  $f(x,y) = x^2/y$ 

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[ \begin{array}{c} y \\ -x \end{array} \right] \left[ \begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0$$

convex for y > 0



**log-sum-exp**:  $f(x) = \log \sum_{k=1}^{n} \exp x_k$  is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show  $\nabla^2 f(x) \succeq 0$ , we must verify that  $v^T \nabla^2 f(x) v \ge 0$  for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since  $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2) (\sum_k z_k)$  (from Cauchy-Schwarz inequality)

**geometric mean**:  $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$  on  $\mathbb{R}_{++}^n$  is concave (similar proof as for log-sum-exp)

## **Epigraph and sublevel set**

 $\alpha$ -sublevel set of  $f : \mathbb{R}^n \to \mathbb{R}$ :

$$C_{\alpha} = \{ x \in \operatorname{\mathbf{dom}} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of  $f : \mathbb{R}^n \to \mathbb{R}$ :

$$\mathbf{epi}\,f = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$



f is convex if and only if epi f is a convex set

## Jensen's inequality

**basic inequality:** if f is convex, then for  $0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

**extension:** if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{Prob}(z=x) = \theta, \qquad \operatorname{Prob}(z=y) = 1 - \theta$$

## **Operations that preserve convexity**

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show  $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
  - nonnegative weighted sum
  - composition with affine function
  - pointwise maximum and supremum
  - composition
  - minimization
  - perspective

## Positive weighted sum & composition with affine function

**nonnegative multiple:**  $\alpha f$  is convex if f is convex,  $\alpha \ge 0$ 

sum:  $f_1 + f_2$  convex if  $f_1, f_2$  convex (extends to infinite sums, integrals)

**composition with affine function**: f(Ax + b) is convex if f is convex

#### examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex

#### examples

• piecewise-linear function:  $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$  is convex

• sum of r largest components of  $x \in \mathbb{R}^n$ :

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex  $(x_{[i]}$  is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

## **Pointwise supremum**

if f(x,y) is convex in x for each  $y \in \mathcal{A}$ , then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

#### examples

• support function of a set C:  $S_C(x) = \sup_{y \in C} y^T x$  is convex

• distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

**•** maximum eigenvalue of symmetric matrix: for  $X \in \mathbf{S}^n$ ,

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

## **Composition with scalar functions**

composition of  $g: \mathbb{R}^n \to \mathbb{R}$  and  $h: \mathbb{R} \to \mathbb{R}$ :

f(x) = h(g(x))

f is convex if  $\begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$ 

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension  $\tilde{h}$ 

#### examples

- $\exp g(x)$  is convex if g is convex
- 1/g(x) is convex if g is concave and positive

## **Vector composition**

composition of  $g: \mathbb{R}^n \to \mathbb{R}^k$  and  $h: \mathbb{R}^k \to \mathbb{R}$ :

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if  $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \end{array}$ 

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

#### examples

• 
$$\sum_{i=1}^{m} \log g_i(x)$$
 is concave if  $g_i$  are concave and positive

• 
$$\log \sum_{i=1}^{m} \exp g_i(x)$$
 is convex if  $g_i$  are convex

## Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

#### examples

• 
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives  $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1}B^T) x$ 

g is convex, hence Schur complement  $A - BC^{-1}B^T \succeq 0$ 

• distance to a set:  $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$  is convex if S is convex

## The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x - f(x))$$



- $f^*$  is convex (even if f is not)
- Used in regularization, duality results, . . .

## examples

• negative logarithm  $f(x) = -\log x$ 

$$\begin{aligned} f^*(y) &= \sup_{x>0} (xy + \log x) \\ &= \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases} \end{aligned}$$

• strictly convex quadratic  $f(x) = (1/2)x^TQx$  with  $Q \in \mathbf{S}_{++}^n$ 

$$f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)$$
$$= \frac{1}{2} y^T Q^{-1} y$$

## **Quasiconvex functions**

 $f: \mathbb{R}^n \to \mathbb{R}$  is quasiconvex if  $\mathbf{dom} f$  is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

are convex for all  $\boldsymbol{\alpha}$ 



• f is quasiconcave if -f is quasiconvex

• *f* is quasilinear if it is quasiconvex and quasiconcave

## **Examples**

- $\sqrt{|x|}$  is quasiconvex on  $\mathbb R$
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$  is quasilinear
- $\log x$  is quasilinear on  $\mathbb{R}_{++}$
- $f(x_1, x_2) = x_1 x_2$  is quasiconcave on  $\mathbb{R}^2_{++}$
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom} f = \{x \mid c^T x + d > 0\}$$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \text{dom} \, f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

#### is quasiconvex

## **Properties**

**modified Jensen inequality:** for quasiconvex f

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$



sums of quasiconvex functions are not necessarily quasiconvex

## Log-concave and log-convex functions

a positive function f is log-concave if  $\log f$  is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$
 for  $0 \le \theta \le 1$ 

f is log-convex if  $\log f$  is convex

- powers:  $x^a$  on  $\mathbb{R}_{++}$  is log-convex for  $a \leq 0$ , log-concave for  $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

 $\blacksquare$  cumulative Gaussian distribution function  $\Phi$  is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

• twice differentiable f with convex domain is log-concave if and only if

 $f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T$ 

for all  $x \in \operatorname{\mathbf{dom}} f$ 

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if  $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$  is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

#### consequences of integration property

• convolution f \* g of log-concave functions f, g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if  $C \subseteq \mathbb{R}^n$  convex and y is a random variable with log-concave pdf then

$$f(x) = \mathbf{Prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y) \, dy, \qquad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

# **Convex Optimization Problems**

# Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

## **Optimization problem in standard form**

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$  is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$  is the objective or cost function
- $f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m$ , are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$  are the equality constraint functions

## optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

p<sup>\*</sup> = ∞ if problem is infeasible (no x satisfies the constraints)
p<sup>\*</sup> = -∞ if problem is unbounded below

## **Optimal and locally optimal points**

x is **feasible** if  $x \in \text{dom } f_0$  and it satisfies the constraints a feasible x is **optimal** if  $f_0(x) = p^*$ ;  $X_{opt}$  is the set of optimal points x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

•  $f_0(x) = 1/x$ ,  $\operatorname{dom} f_0 = \mathbb{R}_{++}$ :  $p^* = 0$ , no optimal point

• 
$$f_0(x) = -\log x$$
,  $\operatorname{dom} f_0 = \mathbb{R}_{++}$ :  $p^* = -\infty$ 

• 
$$f_0(x) = x \log x$$
,  $\operatorname{dom} f_0 = \mathbb{R}_{++}$ :  $p^* = -1/e$ ,  $x = 1/e$  is optimal

• 
$$f_0(x) = x^3 - 3x$$
,  $p^* = -\infty$ , local optimum at  $x = 1$ 

## Implicit constraints

the standard form optimization problem has an **implicit constraint** 

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- we call  $\mathcal{D}$  the **domain** of the problem
- the constraints  $f_i(x) \leq 0$ ,  $h_i(x) = 0$  are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

#### example:

minimize 
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints  $a_i^T x < b_i$ 

## Feasibility problem

find 
$$x$$
  
subject to  $f_i(x) \le 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

can be considered a special case of the general problem with  $f_0(x) = 0$ :

$$\begin{array}{ll} \mbox{minimize} & 0\\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m\\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

•  $p^{\star} = 0$  if constraints are feasible; any feasible x is optimal

•  $p^{\star} = \infty$  if constraints are infeasible

## **Convex optimization problem**

#### standard form convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

- $f_0$ ,  $f_1$ , . . . ,  $f_m$  are convex; equality constraints are affine
- problem is *quasiconvex* if  $f_0$  is quasiconvex (and  $f_1, \ldots, f_m$  convex)

often written as

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

important property: feasible set of a convex optimization problem is convex

#### example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- $f_0$  is convex; feasible set  $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$  is convex
- not a convex problem (according to our definition):  $f_1$  is not convex,  $h_1$  is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \mbox{minimize} & x_1^2 + x_2^2 \\ \mbox{subject to} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array}$$

## Local and global optima

any locally optimal point of a convex problem is (globally) optimal **Proof**: suppose x is locally optimal and y is optimal with  $f_0(y) < f_0(x)$ x locally optimal means there is an R > 0 such that

$$z$$
 feasible,  $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$ 

consider  $z = \theta y + (1 - \theta)x$  with  $\theta = R/(2||y - x||_2)$ 

• 
$$||y - x||_2 > R$$
, so  $0 < \theta < 1/2$ 

z is a convex combination of two feasible points, hence also feasible
||z - x||<sub>2</sub> = R/2 and

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal

# **Optimality criterion for differentiable** $f_0$

 $\boldsymbol{x}$  is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$  for all feasible y



if nonzero,  $\nabla f_0(x)$  defines a supporting hyperplane to feasible set X at x
### **Equivalent convex problems**

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

is equivalent to

$$\begin{array}{ll} \mbox{minimize (over $z$)} & f_0(Fz+x_0) \\ \mbox{subject to} & f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m \end{array}$$

where F and  $x_0$  are such that

$$Ax = b \quad \Longleftrightarrow \quad x = Fz + x_0 \text{ for some } z$$

### introducing equality constraints

minimize 
$$f_0(A_0x + b_0)$$
  
subject to  $f_i(A_ix + b_i) \le 0$ ,  $i = 1, ..., m$ 

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

### introducing slack variables for linear inequalities

$$\begin{array}{ll} \mathsf{minimize} & f_0(x) \\ \mathsf{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

**epigraph form**: standard form convex problem is equivalent to

minimize (over 
$$x, t$$
)  $t$   
subject to  
 $f_0(x) - t \le 0$   
 $f_i(x) \le 0, \quad i = 1, \dots, m$   
 $Ax = b$ 

### minimizing over some variables

minimize 
$$f_0(x_1,x_2)$$
  
subject to  $f_i(x_1) \leq 0, \quad i=1,\ldots,m$ 

is equivalent to

minimize 
$$\tilde{f}_0(x_1)$$
  
subject to  $f_i(x_1) \leq 0, \quad i = 1, \dots, m$ 

where  $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$ 

## **Quasiconvex optimization**

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

with  $f_0: \mathbb{R}^n \to \mathbb{R}$  quasiconvex,  $f_1, \ldots, f_m$  convex

can have locally optimal points that are not (globally) optimal

 $(\underline{x, f_0(x)})$ 

### quasiconvex optimization via convex feasibility problems

$$f_0(x) \le t, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that  $t \ge p^*$ ; if infeasible,  $t \le p^*$

Bisection method for quasiconvex optimization

```
given l \leq p^*, u \geq p^*, tolerance \epsilon > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u - l \leq \epsilon.
```

requires exactly  $\lceil \log_2((u-l)/\epsilon) \rceil$  iterations (where u, l are initial values)

$$\begin{array}{ll} \text{minimize} & c^T x + d \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



### Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$$



•  $a_i^T x \leq b_i$  for all  $x \in \mathcal{B}$  if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

• hence,  $x_c$ , r can be determined by solving the LP

maximize 
$$r$$
  
subject to  $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$ 

## (Generalized) linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom } f_0(x) = \{x \mid e^T x + f > 0\}$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \mbox{minimize} & c^T y + dz \\ \mbox{subject to} & Gy \preceq hz \\ & Ay = bz \\ & e^T y + fz = 1 \\ & z \geq 0 \end{array}$$

## Quadratic program (QP)

minimize 
$$(1/2)x^T P x + q^T x + r$$
  
subject to  $Gx \leq h$   
 $Ax = b$ 

•  $P \in \mathbf{S}_{+}^{n}$ , so objective is convex quadratic

minimize a convex quadratic function over a polyhedron



## **Examples**

least-squares

minimize  $||Ax - b||_2^2$ 

- analytical solution  $x^* = A^{\dagger}b$  ( $A^{\dagger}$  is pseudo-inverse)
- can add linear constraints, e.g.,  $l \preceq x \preceq u$

linear program with random cost

$$\begin{array}{ll} \text{minimize} & \bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x) \\ \text{subject to} & G x \preceq h, \quad A x = b \end{array}$$

- c is random vector with mean  $\bar{c}$  and covariance  $\Sigma$
- hence,  $c^T x$  is random variable with mean  $\bar{c}^T x$  and variance  $x^T \Sigma x$
- $\gamma > 0$  is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

## Quadratically constrained quadratic program (QCQP)

minimize 
$$(1/2)x^T P_0 x + q_0^T x + r_0$$
  
subject to  $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$   
 $Ax = b$ 

- $P_i \in \mathbf{S}_+^n$ ; objective and constraints are convex quadratic
- if  $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$ , feasible region is intersection of m ellipsoids and an affine set

## Second-order cone programming

minimize 
$$f^T x$$
  
subject to  $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$   
 $F x = g$ 

 $(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$ 

inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i+1}$ 

- for  $n_i = 0$ , reduces to an LP; if  $c_i = 0$ , reduces to a QCQP
- more general than QCQP and LP

## **Robust linear programming**

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i$ ,  $i = 1, \dots, m$ ,

there can be uncertainty in c,  $a_i$ ,  $b_i$ 

two common approaches to handling uncertainty (in  $a_i$ , for simplicity)

**deterministic model:** constraints must hold for all  $a_i \in \mathcal{E}_i$ 

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i$  for all  $a_i \in \mathcal{E}_i$ ,  $i = 1, \dots, m$ ,

stochastic model:  $a_i$  is random variable; constraints must hold with probability  $\eta$ 

minimize 
$$c^T x$$
  
subject to  $\mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$ 

### deterministic approach via SOCP

• choose an ellipsoid as  $\mathcal{E}_i$ :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbb{R}^n, \quad P_i \in \mathbb{R}^{n \times n})$$

center is  $\bar{a}_i$ , semi-axes determined by singular values/vectors of  $P_i$ robust LP

> minimize  $c^T x$ subject to  $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize  $c^T x$ subject to  $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$ 

(follows from  $\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$ )

### stochastic approach via SOCP

assume a<sub>i</sub> is Gaussian with mean ā<sub>i</sub>, covariance Σ<sub>i</sub> (a<sub>i</sub> ~ N(ā<sub>i</sub>, Σ<sub>i</sub>))
 a<sub>i</sub><sup>T</sup>x is Gaussian r.v. with mean ā<sub>i</sub><sup>T</sup>x, variance x<sup>T</sup>Σ<sub>i</sub>x; hence

$$\operatorname{Prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where 
$$\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$$
 is CDF of  $\mathcal{N}(0,1)$  robust LP

minimize  $c^T x$ subject to  $\operatorname{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$ 

with  $\eta \geq 1/2$  , is equivalent to the SOCP

minimize 
$$c^T x$$
  
subject to  $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i = 1, \dots, m$ 

### Impact of reliability

 $\{x \mid \mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \ i = 1, \dots, m\}$ 



### **Generalized inequality constraints**

### convex problem with generalized inequality constraints

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \preceq_{K_i} 0$ ,  $i = 1, \dots, m$   
 $Ax = b$ 

- $f_0 : \mathbb{R}^n \to \mathbb{R}$  convex;  $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i} K_i$ -convex w.r.t. proper cone  $K_i$
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize 
$$c^T x$$
  
subject to  $Fx + g \preceq_K 0$   
 $Ax = b$ 

extends linear programming  $(K = \mathbb{R}^m_+)$  to nonpolyhedral cones

## Semidefinite program (SDP)

minimize 
$$c^T x$$
  
subject to  $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leq 0$   
 $Ax = b$ 

with  $F_i$ ,  $G \in \mathbf{S}^k$ 

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

### LP and equivalent SDP

LP: minimize  $c^T x$  SDP: minimize  $c^T x$ subject to  $Ax \leq b$  subject to  $diag(Ax - b) \leq 0$ 

(note different interpretation of generalized inequality  $\leq$ )

### SOCP and equivalent SDP

SOCP: minimize 
$$f^T x$$
  
subject to  $||A_i x + b_i||_2 \le c_i^T x + d_i$ ,  $i = 1, \dots, m$ 

SDP: minimize 
$$f^T x$$
  
subject to  $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, m$ 

minimize  $\lambda_{\max}(A(x))$ 

where  $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$  (with given  $A_i \in \mathbf{S}^k$ )

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$ 

• variables  $x \in \mathbb{R}^n$ ,  $t \in \mathbb{R}$ 

follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI$$

## Matrix norm minimization

$$\begin{array}{ll} \text{minimize} & \|A(x)\|_2 = \left(\lambda_{\max}(A(x)^T A(x))\right)^{1/2} \\ \text{where } A(x) = A_0 + x_1 A_1 + \dots + x_n A_n \text{ (with given } A_i \in \mathbf{S}^{p \times q} \text{)} \\ \text{equivalent SDP} \\ & \\ \text{minimize} \quad t \\ \text{subject to} \quad \left[ \begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0 \end{array}$$

- variables  $x \in \mathbb{R}^n$ ,  $t \in \mathbb{R}$
- constraint follows from

$$\|A\|_{2} \leq t \iff A^{T}A \leq t^{2}I, \quad t \geq 0$$
$$\iff \begin{bmatrix} tI & A\\ A^{T} & tI \end{bmatrix} \succeq 0$$

# Duality

- Lagrange dual problem
- weak and strong duality
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

## Lagrangian

**standard form problem** (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

variable  $x \in \mathbb{R}^n$ , domain  $\mathcal{D}$ , optimal value  $p^{\star}$ 

**Lagrangian:**  $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ , with dom  $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ ,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

weighted sum of objective and constraint functions

- $\lambda_i$  is Lagrange multiplier associated with  $f_i(x) \leq 0$
- $\nu_i$  is Lagrange multiplier associated with  $h_i(x) = 0$

### Lagrange dual function

Lagrange dual function:  $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ ,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be  $-\infty$  for some  $\lambda,\,\nu$ 

**lower bound property:** if  $\lambda \succeq 0$ , then  $g(\lambda, \nu) \leq p^{\star}$ 

proof: if  $\tilde{x}$  is feasible and  $\lambda \succeq 0$ , then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible  $\tilde{x}$  gives  $p^{\star} \geq g(\lambda, \nu)$ 

### Least-norm solution of linear equations

 $\begin{array}{ll} \mbox{minimize} & x^T x \\ \mbox{subject to} & Ax = b \end{array}$ 

### dual function

• Lagrangian is 
$$L(x,\nu) = x^T x + \nu^T (Ax - b)$$

• to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of  $\nu$ 

lower bound property:  $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$  for all  $\nu$ 

## Standard form LP

minimize 
$$c^T x$$
  
subject to  $Ax = b$ ,  $x \succeq 0$ 

### dual function

Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

■ *L* is linear in *x*, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain  $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$ , hence concave

lower bound property:  $p^{\star} \geq -b^T \nu$  if  $A^T \nu + c \succeq 0$ 

## **Equality constrained norm minimization**

minimize ||x||subject to Ax = b

dual function

$$g(\nu) = \inf_{x}(\|x\| - \nu^{T}Ax + b^{T}\nu) = \begin{cases} b^{T}\nu & \|A^{T}\nu\|_{*} \leq 1\\ -\infty & \text{otherwise} \end{cases}$$
  
where  $\|v\|_{*} = \sup_{\|u\| \leq 1} u^{T}v$  is dual norm of  $\|\cdot\|$   
proof: follows from  $\inf_{x}(\|x\| - y^{T}x) = 0$  if  $\|y\|_{*} \leq 1$ ,  $-\infty$  otherwise  
• if  $\|y\|_{*} \leq 1$ , then  $\|x\| - y^{T}x \geq 0$  for all  $x$ , with equality if  $x = 0$ 

• if  $||y||_* > 1$ , choose x = tu where  $||u|| \le 1$ ,  $u^T y = ||y||_* > 1$ :

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty \text{ as } t \to \infty$$

lower bound property:  $p^{\star} \geq b^T \nu$  if  $||A^T \nu||_* \leq 1$ 

### **Two-way partitioning**

minimize  $x^T W x$ subject to  $x_i^2 = 1, \quad i = 1, \dots, n$ 

- a nonconvex problem; feasible set contains  $2^n$  discrete points
- interpretation: partition  $\{1, \ldots, n\}$  in two sets;  $W_{ij}$  is cost of assigning i, j to the same set;  $-W_{ij}$  is cost of assigning to different sets

### dual function

$$g(\nu) = \inf_{x} (x^{T}Wx + \sum_{i} \nu_{i}(x_{i}^{2} - 1)) = \inf_{x} x^{T}(W + \operatorname{diag}(\nu))x - \mathbf{1}^{T}\nu$$
$$= \begin{cases} -\mathbf{1}^{T}\nu & W + \operatorname{diag}(\nu) \succeq 0\\ -\infty & \text{otherwise} \end{cases}$$

lower bound property:  $p^* \ge -\mathbf{1}^T \nu$  if  $W + \operatorname{diag}(\nu) \succeq 0$ 

example:  $\nu = -\lambda_{\min}(W)\mathbf{1}$  gives bound  $p^{\star} \ge n\lambda_{\min}(W)$ 

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$ 

- finds best lower bound on  $p^{\star}$ , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted  $d^{\star}$
- $\lambda$ ,  $\nu$  are dual feasible if  $\lambda \succeq 0$ ,  $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint  $(\lambda, \nu) \in \operatorname{dom} g$  explicit

example: standard form LP and its dual (page 99)

$$\begin{array}{lll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T \nu \\ \mbox{subject to} & Ax = b & \mbox{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$

## Weak and strong duality

weak duality:  $d^\star \leq p^\star$ 

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize 
$$-\mathbf{1}^T \nu$$
  
subject to  $W + \mathbf{diag}(\nu) \succeq 0$ 

gives a lower bound for the two-way partitioning problem on page 101

strong duality:  $d^{\star} = p^{\star}$ 

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

## **Slater's constraint qualification**

strong duality holds for a convex problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

if it is strictly feasible, *i.e.*,

 $\exists x \in \operatorname{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$ 

- also guarantees that the dual optimum is attained (if  $p^{\star} > -\infty$ )
- can be sharpened: e.g., can replace  $int \mathcal{D}$  with  $relint \mathcal{D}$  (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

## Inequality form LP

primal problem

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \preceq b \end{array}$ 

### dual function

$$g(\lambda) = \inf_{x} \left( (c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

### dual problem

maximize 
$$-b^T \lambda$$
  
subject to  $A^T \lambda + c = 0, \quad \lambda \succeq 0$ 

- from Slater's condition:  $p^{\star} = d^{\star}$  if  $A\tilde{x} \prec b$  for some  $\tilde{x}$
- in fact,  $p^{\star} = d^{\star}$  except when primal and dual are infeasible

## Quadratic program

primal problem (assume  $P \in \mathbf{S}_{++}^n$ )

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \preceq b \end{array}$ 

### dual function

$$g(\lambda) = \inf_{x} \left( x^T P x + \lambda^T (A x - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

### dual problem

maximize 
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$
  
subject to  $\lambda \succeq 0$ 

• from Slater's condition:  $p^{\star} = d^{\star}$  if  $A\tilde{x} \prec b$  for some  $\tilde{x}$ 

• in fact,  $p^{\star} = d^{\star}$  always

## A nonconvex problem with strong duality

 $\begin{array}{ll} \mbox{minimize} & x^TAx + 2b^Tx \\ \mbox{subject to} & x^Tx \leq 1 \end{array}$ 

nonconvex if  $A \not\succeq 0$ 

dual function:  $g(\lambda) = \inf_x (x^T (A + \lambda I) x + 2b^T x - \lambda)$ 

- unbounded below if  $A + \lambda I \succeq 0$  or if  $A + \lambda I \succeq 0$  and  $b \notin \mathcal{R}(A + \lambda I)$
- minimized by  $x = -(A + \lambda I)^{\dagger}b$  otherwise:  $g(\lambda) = -b^T(A + \lambda I)^{\dagger}b \lambda$

dual problem and equivalent SDP:

 $\begin{array}{ll} \text{maximize} & -b^T (A + \lambda I)^{\dagger} b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 \\ & b \in \mathcal{R}(A + \lambda I) & \text{subject to} & \left[ \begin{array}{cc} A + \lambda I & b \\ & b^T & t \end{array} \right] \succeq 0 \end{array}$ 

strong duality although primal problem is not convex (more later)

### **Complementary slackness**

Assume strong duality holds,  $x^{\star}$  is primal optimal,  $(\lambda^{\star}, \nu^{\star})$  is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$
$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$
$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

•  $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$ 

•  $\lambda_i^{\star} f_i(x^{\star}) = 0$  for  $i = 1, \dots, m$  (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$
## Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable  $f_i$ ,  $h_i$ ):

- 1. Primal feasibility:  $f_i(x) \le 0$ , i = 1, ..., m,  $h_i(x) = 0$ , i = 1, ..., p
- 2. Dual feasibility:  $\lambda \succeq 0$
- 3. Complementary slackness:  $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. Gradient of Lagrangian with respect to x vanishes (first order condition):

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

If strong duality holds and x,  $\lambda$ ,  $\nu$  are optimal, then they must satisfy the KKT conditions

## KKT conditions for convex problem

If  $\tilde{x}$ ,  $\tilde{\lambda}$ ,  $\tilde{\nu}$  satisfy KKT for a **convex problem**, then they are optimal:

- from complementary slackness:  $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity):  $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,  $f_0( ilde{x}) = g( ilde{\lambda}, ilde{
u})$ 

If **Slater's condition** is satisfied, x is optimal if and only if there exist  $\lambda$ ,  $\nu$  that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition  $\nabla f_0(x) = 0$  for unconstrained problem

### Summary:

- When strong duality holds, the KKT conditions are necessary conditions for optimality
- If the problem is convex, they are also sufficient

example: water-filling (assume  $\alpha_i > 0$ )

minimize 
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$
  
subject to  $x \succeq 0$ ,  $\mathbf{1}^T x = 1$ 

x is optimal iff  $x\succeq 0,\ \mathbf{1}^Tx=1,$  and there exist  $\lambda\in\mathbb{R}^n,\ \nu\in\mathbb{R}$  such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

• if 
$$u < 1/lpha_i$$
:  $\lambda_i = 0$  and  $x_i = 1/
u - lpha_i$ 

• if 
$$\nu \ge 1/\alpha_i$$
:  $\lambda_i = \nu - 1/\alpha_i$  and  $x_i = 0$ 

• determine  $\nu$  from  $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$ 

### interpretation

- n patches; level of patch i is at height  $\alpha_i$
- flood area with unit amount of water
- $\blacksquare$  resulting level is  $1/\nu^{\star}$



## (unperturbed) optimization problem and its dual

$$\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m & \text{subject to} & \lambda \succeq 0 \\ & h_i(x)=0, \quad i=1,\ldots,p & \end{array}$$

### perturbed problem and its dual

$$\begin{array}{ll} \min & f_0(x) & \max & g(\lambda, \nu) - u^T \lambda - v^T \nu \\ \text{s.t.} & f_i(x) \leq u_i, \quad i = 1, \dots, m & \text{s.t.} \quad \lambda \succeq 0 \\ & h_i(x) = v_i, \quad i = 1, \dots, p \end{array}$$

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$  is optimal value as a function of u, v
- $\blacksquare$  we are interested in information about  $p^\star(u,v)$  that we can obtain from the solution of the unperturbed problem and its dual

**global sensitivity result** Strong duality holds for unperturbed problem and  $\lambda^*$ ,  $\nu^*$  are dual optimal for unperturbed problem. Apply **weak duality** to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

**local sensitivity:** if (in addition)  $p^*(u, v)$  is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

## **Duality and problem reformulations**

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

### common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

e.g., replace  $f_0(x)$  by  $\phi(f_0(x))$  with  $\phi$  convex, increasing

## Introducing new variables and equality constraints

minimize  $f_0(Ax+b)$ 

- dual function is constant:  $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

### reformulated problem and its dual

$$\begin{array}{ll} \mbox{minimize} & f_0(y) & \mbox{maximize} & b^T \nu - f_0^*(\nu) \\ \mbox{subject to} & Ax + b - y = 0 & \mbox{subject to} & A^T \nu = 0 \\ \end{array}$$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

**norm approximation problem:** minimize ||Ax - b||

minimize 
$$||y||$$
  
subject to  $y = Ax - b$ 

can look up conjugate of  $\|\cdot\|,$  or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$
  
= 
$$\begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$
  
= 
$$\begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1\\ -\infty & \text{otherwise} \end{cases}$$

(see page 98)

### dual of norm approximation problem

maximize 
$$b^T \nu$$
  
subject to  $A^T \nu = 0$ ,  $\|\nu\|_* \le 1$ 

### LP with box constraints: primal and dual problem

 $\begin{array}{lll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$ 

### reformulation with box constraints made implicit

minimize 
$$f_0(x) = \begin{cases} c^T x & -\mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$
  
subject to  $Ax = b$ 

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$
  
=  $-b^T \nu - \|A^T \nu + c\|_1$ 

dual problem: maximize  $-b^T \nu - \|A^T \nu + c\|_1$ 

## **Problems with generalized inequalities**

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

 $\preceq_{K_i}$  is generalized inequality on  $\mathbb{R}^{k_i}$ 

definitions are parallel to scalar case:

- Lagrange multiplier for  $f_i(x) \preceq_{K_i} 0$  is vector  $\lambda_i \in \mathbb{R}^{k_i}$
- Lagrangian  $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$ , is defined as

$$L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function  $g: \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$ , is defined as

$$g(\lambda_1, \ldots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)$$

lower bound property: if  $\lambda_i \succeq_{K_i^*} 0$ , then  $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$ 

proof: if  $\tilde{x}$  is feasible and  $\lambda \succeq_{K_i^*} 0$ , then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$
  
$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$
  
$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible  $\tilde{x}$  gives  $p^* \ge g(\lambda_1, \ldots, \lambda_m, \nu)$ 

### dual problem

maximize 
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$
  
subject to  $\lambda_i \succeq_{K_i^*} 0, \quad i = 1, \ldots, m$ 

- weak duality:  $p^{\star} \ge d^{\star}$  always
- strong duality:  $p^* = d^*$  for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

## Semidefinite program

primal SDP  $(F_i, G \in \mathbf{S}^k)$ 

minimize 
$$c^T x$$
  
subject to  $x_1F_1 + \cdots + x_nF_n \preceq G$ 

• Lagrange multiplier is matrix  $Z \in \mathbf{S}^k$ 

• Lagrangian 
$$L(x, Z) = c^T x + \operatorname{Tr} \left( Z(x_1 F_1 + \dots + x_n F_n - G) \right)$$

dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{Tr}(GZ) & \mathbf{Tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

### dual SDP

maximize 
$$-\mathbf{Tr}(GZ)$$
  
subject to  $Z \succeq 0$ ,  $\mathbf{Tr}(F_iZ) + c_i = 0$ ,  $i = 1, \dots, n$ 

 $p^{\star} = d^{\star}$  if primal SDP is strictly feasible ( $\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$ )

# Convex problem & constraint qualification

 $\downarrow$ 

Strong duality

### **Convex problem**

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

The problem satisfies Slater's condition if it is strictly feasible, *i.e.*,

$$\exists x \in \operatorname{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

also guarantees that the dual optimum is attained (if  $p^* > -\infty$ )

there exist many other types of constraint qualifications

## KKT conditions for convex problem

If  $\tilde{x}$ ,  $\tilde{\lambda}$ ,  $\tilde{\nu}$  satisfy KKT for a **convex problem**, then they are optimal:

- from complementary slackness:  $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity):  $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,  $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$  with  $(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$  feasible.

If **Slater's condition** is satisfied, x is optimal if and only if there exist  $\lambda$ ,  $\nu$  that satisfy KKT conditions

- Slater implies strong duality (more on this now), and dual optimum is attained
- generalizes optimality condition  $\nabla f_0(x) = 0$  for unconstrained problem

### Summary

For a convex problem satisfying constraint qualification, the KKT conditions are necessary & sufficient conditions for optimality.

To simplify the analysis. We make two additional technical assumptions:

- The domain  $\mathcal{D}$  has nonempty interior (hence,  $\operatorname{relint} \mathcal{D} = \operatorname{int} \mathcal{D}$ )
- We also assume that A has full rank, i.e.  $\operatorname{\mathbf{Rank}} A = p$ .

• We define the set  $\mathcal{A}$  as

$$\mathcal{A} = \{ (u, v, t) \mid \exists x \in \mathcal{D}, \ f_i(x) \le u_i, \ i = 1, \dots, m, \\ h_i(x) = v_i, \ i = 1, \dots, p, \ f_0(x) \le t \},$$

which is the set of values taken by the constraint and objective functions.

- If the problem is convex, A is defined by a list of convex constraints hence is convex.
- We define a second convex set  $\mathcal{B}$  as

$$\mathcal{B} = \{ (0, 0, s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^\star \}.$$

The sets A and B do not intersect (otherwise p\* could not be optimal value of the problem).

**First step:** The hyperplane separating  $\mathcal{A}$  and  $\mathcal{B}$  defines a supporting hyperplane to  $\mathcal{A}$  at  $(0, p^{\star})$ .

## **Geometric proof**



Illustration of strong duality proof, for a convex problem that satisfies Slater's constraint qualification. The two sets  $\mathcal{A}$  and  $\mathcal{B}$  are convex and do not intersect, so they can be separated by a hyperplane. Slater's constraint qualification guarantees that any separating hyperplane must be nonvertical.

By the separating hyperplane theorem there exists  $(\tilde{\lambda}, \tilde{\nu}, \mu) \neq 0$  and  $\alpha$  such that

$$(u, v, t) \in \mathcal{A} \implies \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \ge \alpha,$$
 (2)

and

$$(u, v, t) \in \mathcal{B} \implies \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \le \alpha.$$
 (3)

- From (2) we conclude that  $\tilde{\lambda} \succeq 0$  and  $\mu \ge 0$ . (Otherwise  $\tilde{\lambda}^T u + \mu t$  is unbounded below over  $\mathcal{A}$ , contradicting (2).)
- The condition (3) simply means that  $\mu t \leq \alpha$  for all  $t < p^*$ , and hence,  $\mu p^* \leq \alpha$ .

Together with (2) we conclude that for any  $x \in \mathcal{D}$ ,

$$\mu p^* \le \alpha \le \mu f_0(x) + \sum_{i=1}^m \tilde{\lambda}_i f_i(x) + \tilde{\nu}^T (Ax - b)$$
(4)

Let us assume that  $\mu > 0$  (separating hyperplane is nonvertical)

 $\blacksquare$  We can divide the previous equation by  $\mu$  to get

$$L(x, \tilde{\lambda}/\mu, \tilde{\nu}/\mu) \ge p^{\star}$$

for all  $x \in \mathcal{D}$ 

• Minimizing this inequality over x produces  $p^\star \leq g(\lambda,\nu)$ , where

$$\lambda = \tilde{\lambda}/\mu, \qquad 
u = \tilde{\nu}/\mu.$$

By weak duality we have  $g(\lambda, \nu) \leq p^*$ , so in fact  $g(\lambda, \nu) = p^*$ .

This shows that strong duality holds, and that the dual optimum is attained, whenever  $\mu > 0$ . The normal vector has the form  $(\lambda^*, 1)$  and produces the Lagrange multipliers.

**Second step:** Slater's constraint qualification is used to establish that the hyperplane must be **nonvertical**, i.e.  $\mu > 0$ .

**By contradiction,** assume that  $\mu = 0$ . From (4), we conclude that for all  $x \in \mathcal{D}$ ,

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(x) + \tilde{\nu}^T (Ax - b) \ge 0.$$
(5)

• Applying this to the point  $\tilde{x}$  that satisfies the Slater condition, we have

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(\tilde{x}) \ge 0.$$

• Since  $f_i(\tilde{x}) < 0$  and  $\tilde{\lambda}_i \ge 0$ , we conclude that  $\tilde{\lambda} = 0$ .

This is where we use the two technical assumptions.

- Then (5) implies that for all  $x \in \mathcal{D}$ ,  $\tilde{\nu}^T (Ax b) \ge 0$ .
- But  $\tilde{x}$  satisfies  $\tilde{\nu}^T (A\tilde{x} b) = 0$ , and since  $\tilde{x} \in \operatorname{int} \mathcal{D}$ , there are points in  $\mathcal{D}$  with  $\tilde{\nu}^T (Ax b) < 0$  unless  $A^T \tilde{\nu} = 0$ .
- This contradicts our assumption that  $\operatorname{\mathbf{Rank}} A = p$ .

This means that we cannot have  $\mu = 0$  and ends the proof.

References

- A. Ben-Tal and A. Nemirovski. *Lectures on modern convex optimization : analysis, algorithms, and engineering applications.* MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics : Mathematical Programming Society, Philadelphia, PA, 2001.
- N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.
- L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093–1096, 1979.
- A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization. *Nauka (published in English by John Wiley, Chichester, 1983)*, 1979.
- Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.
- Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.