Optimisation Combinatoire et Convexe.

Introduction, convexité, dualité.

Today

- Convex optimization: introduction
- Course organization and other gory details...
- Convex optimization: basic concepts

Convex Optimization

Convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0
\end{array}
$$

$x \in \mathbb{R}^{n}$ is optimization variable; $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex:

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

for all $x, y, 0 \leq \lambda \leq 1$

- This template includes LS, LP, QP, and many others.
- Good news: convex problems (LP, QP, etc) are fundamentally tractable.
- Bad news: this is an exception, most nonconvex are completely intractable.

Convex optimization

A brief history. . .

- The field is about 50 years old.
- Starts with the work of Von Neumann, Kuhn and Tucker, etc.
- Explodes in the 60 's with the advent of "relatively" cheap and efficient computers. . .
- Key to all this: fast linear algebra
- Some of the theory developed before computers even existed. . .

Convex optimization: history

- Historical view: nonlinear problems are hard, linear ones are easy.
- In reality: Convexity \Longrightarrow low complexity
"... In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." T. Rockafellar.
- True: Nemirovskii and Yudin [1979].
- Very true: Karmarkar [1984].

■ Seriously true: convex programming, Nesterov and Nemirovskii [1994].

Convexity, complexity

- All convex minimization problems with: a first order oracle (returning $f(x)$ and a subgradient) can be solved in polynomial time in size and number of precision digits.
- Proved using the ellipsoid method by Nemirovskii and Yudin [1979].
- Very slow convergence in practice.

Linear Programming

- Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases.
- Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP.
- Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods.

From LP to structured convex programs

- Nesterov and Nemirovskii [1994] show that the interior point methods (IPM) used for LPs can be applied to a larger class of structured convex problems.
- The self-concordance analysis that they introduce extends the polynomial time complexity proof for LPs.
- Most operations that preserve convexity also preserve self-concordance.

Large-scale convex programs

Interior point methods.

- IPM essentially solved once and for all a broad range of medium-scale convex programs.
- For large-scale problems, computing a single Newton step is often too expensive

First order methods.

- Dependence on precision is polynomial $O\left(1 / \epsilon^{\alpha}\right)$, not logarithmic $O(\log (1 / \epsilon))$. This is OK in many applications (stats, etc).
- Run a much larger number of cheaper iterations. No Hessian means significantly lower memory and CPU costs per iteration.
- No unified analysis (self-concordance for IPM): large library of disparate methods.
- Algorithmic choices strictly constrained by problem structure.

Objective: classify these techniques, study their performance \& complexity.

Symmetric cone programs

- An important particular case: linear programming on symmetric cones

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x-b \in \mathcal{K}
\end{array}
$$

- These include the LP, second-order (Lorentz) and semidefinite cone:

LP:	$\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$		
Second order:	$\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}:\\|x\\| \leq y\right\}$		
Semidefinite:	$\left\{X \in \mathbf{S}^{n}: X \succeq 0\right\}$		

- Broad class of problems can be represented in this way.
- Good news: Fast, reliable, open-source solvers available (SDPT3, CVX, etc).

This course will describe some "exotic" applications of these programs.

A few "miracles"

Beyond convexity. . .

- Hidden convexity. Convex programs solving nonconvex problems (\mathcal{S}-lemma).
- Approximation results. Approximating combinatorial problems by convex programs.
- Approximate \mathcal{S}-lemma.
- Approximation ratio for MaxCut, etc.

■ Recovery results on ℓ_{1} penalties. Finding sparse solutions to optimization problems using convex penalties.

- Sparse signal reconstruction.
- Matrix completion (collaborative filtering, NETFLIX, etc.).

Course Organization

Course outline

- Fundamental definitions
- A brief primer on convexity and duality theory
- Algorithmic complexity
- Interior point methods, self-concordance.
- First order algorithms: complexity and classification.
- Modern applications
- Statistics
- Geometrical problems, graphs.
- ...

■ Some "miracles" : approximation, asymptotic and hidden convexity results

- Measure concentration results.
- S-lemma, MaxCut, low rank SDP solutions, nonconvex QCQP, etc.
- High dimensional geometry
- ℓ_{1} recovery, matrix completion, convex deconvolution, etc.

Info

- Course website with lecture notes, homework, etc.

> http://www.di.ens.fr/~aspremon/

- A final exam.

Short blurb

- Contact info on http://www.di.ens.fr/~aspremon/
- Email: aspremon@ens.fr
- Dual PhDs: Ecole Polytechnique \& Stanford University
- Interests: Optimization, machine learning, statistics \& finance.

References

All lecture notes will be posted online, none of the books below are required.

- Nesterov [2003], "Introductory Lectures on Convex Optimization", Springer.
- "Convex Optimization" by Lieven Vandenberghe and Stephen Boyd, available online at:

```
http://www.stanford.edu/~boyd/cvxbook/
```

- See also Ben-Tal and Nemirovski [2001], "Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications", SIAM.
http://www2.isye.gatech.edu/~nemirovs/
- Nesterov and Nemirovskii [1994], "Interior Point Polynomial Algorithms in Convex Programming", SIAM.

Convex Sets

Convex Sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Convex set

line segment between x_{1} and x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2}
$$

with $0 \leq \theta \leq 1$
convex set: contains line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull $\operatorname{Co} S$: set of all convex combinations of points in S

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\} \quad(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

- (Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

- Ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

with $P \in \mathbf{S}_{++}^{n}$ (i.e., P symmetric positive definite)
other representation: $\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}$, with A square and nonsingular.

- Representation impacts problem formulation \& complexity.
- Idem for polytopes, with polynomial number of vertices, exponential number of facets, and vice-versa.

Polyhedra

solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

$\left(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq\right.$ is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^{n} is set of symmetric $n \times n$ matrices

■ $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow \quad z^{T} X z \geq 0 \text { for all } z
$$

\mathbf{S}_{+}^{n} is a convex cone

- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}:$ positive definite $n \times n$ matrices
example: $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$
S=\left\{x \in \mathbb{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$
for $m=2$:

Affine function

suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is affine $\left(f(x)=A x+b\right.$ with $\left.A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}\right)$

- the image of a convex set under f is convex

$$
S \subseteq \mathbb{R}^{n} \text { convex } \quad \Longrightarrow \quad f(S)=\{f(x) \mid x \in S\} \text { convex }
$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$
C \subseteq \mathbb{R}^{m} \text { convex } \quad \Longrightarrow \quad f^{-1}(C)=\left\{x \in \mathbb{R}^{n} \mid f(x) \in C\right\} \text { convex }
$$

examples

- scaling, translation, projection

■ solution set of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \preceq B\right\}$ (with $A_{i}, B \in \mathbf{S}^{p}$)

- hyperbolic cone $\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}, c^{T} x \geq 0\right\}$ (with $P \in \mathbf{S}_{+}^{n}$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex
linear-fractional function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

images and inverse images of convex sets under linear-fractional functions are convex

Generalized inequalities

a convex cone $K \subseteq \mathbb{R}^{n}$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K=\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
K=\left\{x \in \mathbb{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

generalized inequality defined by a proper cone K :

$$
x \preceq_{K} y \quad \Longleftrightarrow \quad y-x \in K, \quad x \prec_{K} y \quad \Longleftrightarrow \quad y-x \in \operatorname{int} K
$$

examples

- componentwise inequality $\left(K=\mathbb{R}_{+}^{n}\right)$

$$
x \preceq \mathbf{R}_{+}^{n} y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

- matrix inequality $\left(K=\mathbf{S}_{+}^{n}\right)$

$$
X \preceq \mathbf{S}_{+}^{n} Y \quad \Longleftrightarrow \quad Y-X \text { positive semidefinite }
$$

these two types are so common that we drop the subscript in \preceq_{K} properties: many properties of \preceq_{K} are similar to \leq on \mathbb{R}, e.g.,

$$
x \preceq_{K} y, \quad u \preceq_{K} v \quad \Longrightarrow \quad x+u \preceq_{K} y+v
$$

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0, b$ such that

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

the hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D
Classical result. Proof relies on minimizing distance between set, and using the argmin to explicitly produce separating hyperplane.

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_{0} :

$$
\left\{x \mid a^{T} x=a^{T} x_{0}\right\}
$$

where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K :

$$
K^{*}=\left\{y \mid y^{T} x \geq 0 \text { for all } x \in K\right\}
$$

examples

- $K=\mathbb{R}_{+}^{n}: K^{*}=\mathbb{R}_{+}^{n}$
- $K=\mathbf{S}_{+}^{n}: K^{*}=\mathbf{S}_{+}^{n}$
- $K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}: K^{*}=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$

■ $K=\left\{(x, t) \mid\|x\|_{1} \leq t\right\}: K^{*}=\left\{(x, t) \mid\|x\|_{\infty} \leq t\right\}$
first three examples are self-dual cones dual cones of proper cones are proper, hence define generalized inequalities:

$$
y \succeq_{K^{*}} 0 \quad \Longleftrightarrow \quad y^{T} x \geq 0 \text { for all } x \succeq_{K} 0
$$

Convex Functions

Outline

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Examples on \mathbb{R}

convex:

- affine: $a x+b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- exponential: $e^{a x}$, for any $a \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbb{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbb{R}_{++}
concave:
- affine: $a x+b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^{n} and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex examples on \mathbb{R}^{n}

- affine function $f(x)=a^{T} x+b$

■ norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$
examples on $\mathbb{R}^{m \times n}(m \times n$ matrices $)$

- affine function

$$
f(X)=\operatorname{Tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Restriction of a convex function to a line

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbb{R}^{n}$
can check convexity of f by checking convexity of functions of one variable
example. $f: \mathbf{S}^{n} \rightarrow \mathbb{R}$ with $f(X)=\log \operatorname{det} X$, $\operatorname{dom} X=\mathbf{S}_{++}^{n}$

$$
\begin{aligned}
g(t)=\log \operatorname{det}(X+t V) & =\log \operatorname{det} X+\log \operatorname{det}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

where λ_{i} are the eigenvalues of $X^{-1 / 2} V X^{-1 / 2}$
g is concave in t (for any choice of $X \succ 0, V$); hence f is concave

Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbb{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n,
$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ (with $P \in \mathbf{S}^{n}$)

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A)
quadratic-over-linear: $f(x, y)=x^{2} / y$

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$

log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\nabla^{2} f(x)=\frac{1}{\mathbf{1}^{T} z} \operatorname{diag}(z)-\frac{1}{\left(\mathbf{1}^{T} z\right)^{2}} z z^{T} \quad\left(z_{k}=\exp x_{k}\right)
$$

to show $\nabla^{2} f(x) \succeq 0$, we must verify that $v^{T} \nabla^{2} f(x) v \geq 0$ for all v :

$$
v^{T} \nabla^{2} f(x) v=\frac{\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)
geometric mean: $f(x)=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ on \mathbb{R}_{++}^{n} is concave
(similar proof as for log-sum-exp)

Epigraph and sublevel set

α-sublevel set of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

extension: if f is convex, then

$$
f(\mathbf{E} z) \leq \mathbf{E} f(z)
$$

for any random variable z
basic inequality is special case with discrete distribution

$$
\operatorname{Prob}(z=x)=\theta, \quad \operatorname{Prob}(z=y)=1-\theta
$$

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum \& composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex

examples

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbb{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex ($x_{[i]}$ is i th largest component of x)
proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex

examples

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Composition with scalar functions

composition of $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$:

$$
f(x)=h(g(x))
$$

f is convex if g convex, h convex, \tilde{h} nondecreasing g concave, h convex, \tilde{h} nonincreasing

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$:

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if g_{i} convex, h convex, \tilde{h} nondecreasing in each argument g_{i} concave, h convex, \tilde{h} nonincreasing in each argument proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0, \quad C \succ 0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)

■ Used in regularization, duality results, . . .

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Quasiconvex functions

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbb{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

Properties

modified Jensen inequality: for quasiconvex f

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$
f(y) \leq f(x) \quad \Longrightarrow \quad \nabla f(x)^{T}(y-x) \leq 0
$$

sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is \log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbb{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

$$
f(x) \nabla^{2} f(x) \preceq \nabla f(x) \nabla f(x)^{T}
$$

for all $x \in \operatorname{dom} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave

■ integration: if $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave (not easy to show)

consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
(f * g)(x)=\int f(x-y) g(y) d y
$$

- if $C \subseteq \mathbb{R}^{n}$ convex and y is a random variable with log-concave pdf then

$$
f(x)=\operatorname{Prob}(x+y \in C)
$$

is log-concave
proof: write $f(x)$ as integral of product of log-concave functions

$$
f(x)=\int g(x+y) p(y) d y, \quad g(u)= \begin{cases}1 & u \in C \\ 0 & u \notin C\end{cases}
$$

p is pdf of y

Convex Optimization Problems

Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbb{R}^{n}$ is the optimization variable
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective or cost function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are the equality constraint functions

optimal value:

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$ if problem is unbounded below

Optimal and locally optimal points

x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies the constraints
a feasible x is optimal if $f_{0}(x)=p^{\star} ; X_{\text {opt }}$ is the set of optimal points x is locally optimal if there is an $R>0$ such that x is optimal for

```
minimize (over z) for (z)
subject to }\quad\mp@subsup{f}{i}{}(z)\leq0,\quadi=1,\ldots,m,\quadhi(z)=0,\quadi=1,\ldots,
\| z - x \| _ { 2 } \leq R
```

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, \operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, \operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, \operatorname{dom} f_{0}=\mathbb{R}_{++}: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x, p^{\star}=-\infty$, local optimum at $x=1$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints $(m=p=0)$
example:

$$
\operatorname{minimize} \quad f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and f_{1}, \ldots, f_{m} convex)
often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

important property: feasible set of a convex optimization problem is convex

example

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition): f_{1} is not convex, h_{1} is not affine
- equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal Proof: suppose x is locally optimal and y is optimal with $f_{0}(y)<f_{0}(x)$ x locally optimal means there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

consider $z=\theta y+(1-\theta) x$ with $\theta=R /\left(2\|y-x\|_{2}\right)$

- $\|y-x\|_{2}>R$, so $0<\theta<1 / 2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z-x\|_{2}=R / 2$ and

$$
f_{0}(z) \leq \theta f_{0}(x)+(1-\theta) f_{0}(y)<f_{0}(x)
$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_{0}

x is optimal if and only if it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0 \quad \text { for all feasible } y
$$

if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa
some common transformations that preserve convexity:

- eliminating equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } z) & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where F and x_{0} are such that

$$
A x=b \quad \Longleftrightarrow \quad x=F z+x_{0} \text { for some } z
$$

- introducing equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { over } x, y_{i}\right) & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, \quad i=0,1, \ldots, m
\end{array}
$$

- introducing slack variables for linear inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m
\end{array}
$$

- epigraph form: standard form convex problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, t) & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- minimizing over some variables

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}_{0}\left(x_{1}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$

Quasiconvex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ quasiconvex, f_{1}, \ldots, f_{m} convex
can have locally optimal points that are not (globally) optimal

quasiconvex optimization via convex feasibility problems

$$
\begin{equation*}
f_{0}(x) \leq t, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method for quasiconvex optimization
given $l \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$.
repeat

1. $t:=(l+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $l:=t$.
until $u-l \leq \epsilon$.
requires exactly $\left\lceil\log _{2}((u-l) / \epsilon)\right\rceil$ iterations (where u, l are initial values)

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Chebyshev center of a polyhedron

Chebyshev center of

$$
\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}
$$

is center of largest inscribed ball

$$
\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}
$$

- $a_{i}^{T} x \leq b_{i}$ for all $x \in \mathcal{B}$ if and only if

$$
\sup \left\{a_{i}^{T}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\}=a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

- hence, x_{c}, r can be determined by solving the LP

$$
\begin{array}{ll}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(Generalized) linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

linear-fractional program

$$
f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{T} x+f>0\right\}
$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \preceq h z \\
& A y=b z \\
& e^{T} y+f z=1 \\
& z \geq 0
\end{array}
$$

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse $)$

■ can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x=\mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \preceq h, \quad A x=b
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $P_{i} \in \mathbf{S}_{+}^{n}$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \in \mathbf{S}_{++}^{n}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

$\left(A_{i} \in \mathbb{R}^{n_{i} \times n}, F \in \mathbb{R}^{p \times n}\right)$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right) \in \text { second-order cone in } \mathbb{R}^{n_{i}+1}
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

there can be uncertainty in c, a_{i}, b_{i}
two common approaches to handling uncertainty (in a_{i}, for simplicity)

- deterministic model: constraints must hold for all $a_{i} \in \mathcal{E}_{i}$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- stochastic model: a_{i} is random variable; constraints must hold with probability η

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

deterministic approach via SOCP

- choose an ellipsoid as \mathcal{E}_{i} :

$$
\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} \quad\left(\bar{a}_{i} \in \mathbb{R}^{n}, \quad P_{i} \in \mathbb{R}^{n \times n}\right)
$$

center is \bar{a}_{i}, semi-axes determined by singular values/vectors of P_{i}

- robust LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to the SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(follows from $\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}$)

stochastic approach via SOCP

- assume a_{i} is Gaussian with mean \bar{a}_{i}, covariance $\Sigma_{i}\left(a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right)\right)$
- $a_{i}^{T} x$ is Gaussian r.v. with mean $\bar{a}_{i}^{T} x$, variance $x^{T} \Sigma_{i} x$; hence

$$
\operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right)=\Phi\left(\frac{b_{i}-\bar{a}_{i}^{T} x}{\left\|\Sigma_{i}^{1 / 2} x\right\|_{2}}\right)
$$

where $\Phi(x)=(1 / \sqrt{2 \pi}) \int_{-\infty}^{x} e^{-t^{2} / 2} d t$ is CDF of $\mathcal{N}(0,1)$

- robust LP

$$
\begin{array}{ll}
\underset{\operatorname{cinimize}}{\operatorname{minim}} & c^{T} x \\
\text { subject to } & \operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m,
\end{array}
$$

with $\eta \geq 1 / 2$, is equivalent to the SOCP
minimize $\quad c^{T} x$
subject to $\quad \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m$

Impact of reliability

$$
\left\{x \mid \operatorname{Prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, i=1, \ldots, m\right\}
$$

$$
\eta=50 \%
$$

$\eta=90 \%$

Generalized inequality constraints

convex problem with generalized inequality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex; $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}} K_{i}$-convex w.r.t. proper cone K_{i}
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)
conic form problem: special case with affine objective and constraints

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F x+g \preceq_{K} 0 \\
& A x=b
\end{array}
$$

extends linear programming $\left(K=\mathbb{R}_{+}^{m}\right)$ to nonpolyhedral cones

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \preceq 0 \\
& A x=b
\end{array}
$$

with $F_{i}, G \in \mathbf{S}^{k}$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \preceq 0, \quad x_{1} \tilde{F}_{1}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \preceq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \preceq 0
$$

LP and SOCP as SDP

LP and equivalent SDP

$\begin{array}{lllll}\text { LP: } & \text { minimize } & c^{T} x \\ & \text { subject to } & A x \preceq b\end{array} \quad$ SDP: $\quad \begin{aligned} & \text { minimize } \\ & \text { subject to }\end{aligned} c^{T} x \quad \operatorname{diag}(A x-b) \preceq 0$
(note different interpretation of generalized inequality \preceq)

SOCP and equivalent SDP

SOCP: minimize $f^{T} x$
subject to $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$
SDP: minimize $f^{T} x$

$$
\text { subject to }\left[\begin{array}{ll}
\left(c_{i}^{T} x+d_{i}\right) I & A_{i} x+b_{i} \\
\left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}
\end{array}\right] \succeq 0, \quad i=1, \ldots, m
$$

Eigenvalue minimization

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{S}^{k}$)
equivalent SDP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A(x) \preceq t I
\end{array}
$$

- variables $x \in \mathbb{R}^{n}, t \in \mathbb{R}$
- follows from

$$
\lambda_{\max }(A) \leq t \quad \Longleftrightarrow \quad A \preceq t I
$$

Matrix norm minimization

$$
\operatorname{minimize} \quad\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{T} A(x)\right)\right)^{1 / 2}
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{S}^{p \times q}$)
equivalent SDP

$$
\left.\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \succeq 0
$$

- variables $x \in \mathbb{R}^{n}, t \in \mathbb{R}$
- constraint follows from

$$
\begin{aligned}
\|A\|_{2} \leq t & \Longleftrightarrow A^{T} A \preceq t^{2} I, \quad t \geq 0 \\
& \Longleftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{T} & t I
\end{array}\right] \succeq 0
\end{aligned}
$$

Duality

Outline

- Lagrange dual problem
- weak and strong duality
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbb{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$

■ to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is linear in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave
lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$

■ if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$:

$$
\|x\|-y^{T} x=t\left(\|u\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets

dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\operatorname{diag}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-\mathbf{1}^{T} \nu$ if $W+\boldsymbol{\operatorname { d i a g }}(\nu) \succeq 0$
example: $\nu=-\lambda_{\min }(W) \mathbf{1}$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit example: standard form LP and its dual (page 99)

minimize	$c^{T} x$	maximize	$-b^{T} \nu$
subject to	$A x=b$	subject to	$A^{T} \nu+c \succeq 0$
	$x \succeq 0$		

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 101
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: e.g., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}

■ in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

■ from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}

- in fact, $p^{\star}=d^{\star}$ always

A nonconvex problem with strong duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1
\end{array}
$$

nonconvex if $A \nsucceq 0$
dual function: $g(\lambda)=\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right)$

- unbounded below if $A+\lambda I \nsucceq 0$ or if $A+\lambda I \succeq 0$ and $b \notin \mathcal{R}(A+\lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger} b$ otherwise: $g(\lambda)=-b^{T}(A+\lambda I)^{\dagger} b-\lambda$
dual problem and equivalent SDP:

$$
\begin{array}{lll}
\text { maximize } & -b^{T}(A+\lambda I)^{\dagger} b-\lambda & \text { maximize }
\end{array} \begin{array}{ll}
-t-\lambda \\
\text { subject to } & A+\lambda I \succeq 0
\end{array} \quad \text { subject to }\left[\begin{array}{cc}
A+\lambda I & b \\
& b \in \mathcal{R}(A+\lambda I)
\end{array}\right.
$$

strong duality although primal problem is not convex (more later)

Complementary slackness

Assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

hence, the two inequalities hold with equality

- x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. Primal feasibility: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. Dual feasibility: $\lambda \succeq 0$
3. Complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. Gradient of Lagrangian with respect to x vanishes (first order condition):

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

If $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$

If Slater's condition is satisfied, x is optimal if and only if there exist λ, ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem

Summary:

- When strong duality holds, the KKT conditions are necessary conditions for optimality
- If the problem is convex, they are also sufficient
example: water-filling (assume $\alpha_{i}>0$)

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbb{R}^{n}, \nu \in \mathbb{R}$ such that

$$
\lambda \succeq 0, \quad \lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu
$$

■ if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$

- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$
- determine ν from $\mathbf{1}^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

interpretation

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / \nu^{\star}$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(x) & \text { maximize } & g(\lambda, \nu) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m & \text { subject to } & \lambda \succeq 0 \\
& h_{i}(x)=0, \quad i=1, \ldots, p & &
\end{array}
$$

max. $\quad g(\lambda, \nu)-u^{T} \lambda-v^{T} \nu$
s.t. $\quad \lambda \succeq 0$

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and $\lambda^{\star}, \nu^{\star}$ are dual optimal for unperturbed problem. Apply weak duality to perturbed problem:

$$
\begin{aligned}
p^{\star}(u, v) & \geq g\left(\lambda^{\star}, \nu^{\star}\right)-u^{T} \lambda^{\star}-v^{T} \nu^{\star} \\
& =p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} \nu^{\star}
\end{aligned}
$$

local sensitivity: if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$
\operatorname{minimize} \quad f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless
reformulated problem and its dual

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(y) & \text { maximize }
\end{array} b^{T} \nu-f_{0}^{*}(\nu)
$$

dual function follows from

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(f_{0}(y)-\nu^{T} y+\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}-f_{0}^{*}(\nu)+b^{T} \nu & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

norm approximation problem: minimize $\|A x-b\|$

$$
\begin{aligned}
& \text { minimize }\|y\| \\
& \text { subject to } y=A x-b
\end{aligned}
$$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}b^{T} \nu+\inf _{y}\left(\|y\|+\nu^{T} y\right) & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} \nu & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(see page 98)
dual of norm approximation problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \nu \\
\text { subject to } & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1
\end{array}
$$

Implicit constraints

LP with box constraints: primal and dual problem

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & -b^{T} \nu-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} \nu+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_{1} \succeq 0, \quad \lambda_{2} \succeq 0
\end{array}
$$

reformulation with box constraints made implicit

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\
\infty & \text { otherwise }\end{cases} \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\inf _{-1 \preceq x \preceq 1}\left(c^{T} x+\nu^{T}(A x-b)\right) \\
& =-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}
\end{aligned}
$$

dual problem: maximize $-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}$

Problems with generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\preceq_{K_{i}}$ is generalized inequality on $\mathbb{R}^{k_{i}}$
definitions are parallel to scalar case:

- Lagrange multiplier for $f_{i}(x) \preceq_{K_{i}} 0$ is vector $\lambda_{i} \in \mathbb{R}^{k_{i}}$

■ Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, is defined as

$$
L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- dual function $g: \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, is defined as

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)=\inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)
$$

lower bound property: if $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then $g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq_{K_{i}^{*}} 0$, then

$$
\begin{aligned}
f_{0}(\tilde{x}) & \geq f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \\
& \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
& =g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)
\end{aligned}
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
\text { subject to } & \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^{\star}=d^{\star}$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $\left(F_{i}, G \in \mathbf{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq G
\end{array}
$$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^{k}$
- Lagrangian $L(x, Z)=c^{T} x+\operatorname{Tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right)$
- dual function

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{Tr}(G Z) & \operatorname{Tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

dual SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{Tr}(G Z) \\
\text { subject to } & Z \succeq 0, \quad \operatorname{Tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

$p^{\star}=d^{\star}$ if primal SDP is strictly feasible $\left(\exists x\right.$ with $\left.x_{1} F_{1}+\cdots+x_{n} F_{n} \prec G\right)$

Proof

Convex problem \& constraint qualification

\Downarrow

Strong duality

Slater's constraint qualification

Convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

The problem satisfies Slater's condition if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- there exist many other types of constraint qualifications

KKT conditions for convex problem

If $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$ with $(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ feasible.

If Slater's condition is satisfied, x is optimal if and only if there exist λ, ν that satisfy KKT conditions

- Slater implies strong duality (more on this now), and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem

Summary

- For a convex problem satisfying constraint qualification, the KKT conditions are necessary \& sufficient conditions for optimality.

Proof

To simplify the analysis. We make two additional technical assumptions:

- The domain \mathcal{D} has nonempty interior (hence, relint $\mathcal{D}=\operatorname{int} \mathcal{D}$)
- We also assume that A has full rank, i.e. $\operatorname{Rank} A=p$.

Proof

- We define the set \mathcal{A} as

$$
\begin{aligned}
\mathcal{A}= & \left\{(u, v, t) \mid \exists x \in \mathcal{D}, f_{i}(x) \leq u_{i}, i=1, \ldots, m,\right. \\
& \left.h_{i}(x)=v_{i}, i=1, \ldots, p, f_{0}(x) \leq t\right\},
\end{aligned}
$$

which is the set of values taken by the constraint and objective functions.

- If the problem is convex, \mathcal{A} is defined by a list of convex constraints hence is convex.
- We define a second convex set \mathcal{B} as

$$
\mathcal{B}=\left\{(0,0, s) \in \mathbb{R}^{m} \times \mathbb{R}^{p} \times \mathbb{R} \mid s<p^{\star}\right\} .
$$

- The sets \mathcal{A} and \mathcal{B} do not intersect (otherwise p^{\star} could not be optimal value of the problem).

First step: The hyperplane separating \mathcal{A} and \mathcal{B} defines a supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$.

Geometric proof

Illustration of strong duality proof, for a convex problem that satisfies Slater's constraint qualification. The two sets \mathcal{A} and \mathcal{B} are convex and do not intersect, so they can be separated by a hyperplane. Slater's constraint qualification guarantees that any separating hyperplane must be nonvertical.

Proof

- By the separating hyperplane theorem there exists $(\tilde{\lambda}, \tilde{\nu}, \mu) \neq 0$ and α such that

$$
\begin{equation*}
(u, v, t) \in \mathcal{A} \Longrightarrow \tilde{\lambda}^{T} u+\tilde{\nu}^{T} v+\mu t \geq \alpha \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(u, v, t) \in \mathcal{B} \Longrightarrow \tilde{\lambda}^{T} u+\tilde{\nu}^{T} v+\mu t \leq \alpha . \tag{3}
\end{equation*}
$$

- From (2) we conclude that $\tilde{\lambda} \succeq 0$ and $\mu \geq 0$. (Otherwise $\tilde{\lambda}^{T} u+\mu t$ is unbounded below over \mathcal{A}, contradicting (2).)
- The condition (3) simply means that $\mu t \leq \alpha$ for all $t<p^{\star}$, and hence, $\mu p^{\star} \leq \alpha$.

Together with (2) we conclude that for any $x \in \mathcal{D}$,

$$
\begin{equation*}
\mu p^{\star} \leq \alpha \leq \mu f_{0}(x)+\sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(x)+\tilde{\nu}^{T}(A x-b) \tag{4}
\end{equation*}
$$

Proof

Let us assume that $\mu>0$ (separating hyperplane is nonvertical)

- We can divide the previous equation by μ to get

$$
L(x, \tilde{\lambda} / \mu, \tilde{\nu} / \mu) \geq p^{\star}
$$

for all $x \in \mathcal{D}$

- Minimizing this inequality over x produces $p^{\star} \leq g(\lambda, \nu)$, where

$$
\lambda=\tilde{\lambda} / \mu, \quad \nu=\tilde{\nu} / \mu
$$

- By weak duality we have $g(\lambda, \nu) \leq p^{\star}$, so in fact $g(\lambda, \nu)=p^{\star}$.

This shows that strong duality holds, and that the dual optimum is attained, whenever $\mu>0$. The normal vector has the form $\left(\lambda^{\star}, 1\right)$ and produces the Lagrange multipliers.

Proof

Second step: Slater's constraint qualification is used to establish that the hyperplane must be nonvertical, i.e. $\mu>0$.

By contradiction, assume that $\mu=0$. From (4), we conclude that for all $x \in \mathcal{D}$,

$$
\begin{equation*}
\sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(x)+\tilde{\nu}^{T}(A x-b) \geq 0 . \tag{5}
\end{equation*}
$$

- Applying this to the point \tilde{x} that satisfies the Slater condition, we have

$$
\sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(\tilde{x}) \geq 0
$$

- Since $f_{i}(\tilde{x})<0$ and $\tilde{\lambda}_{i} \geq 0$, we conclude that $\tilde{\lambda}=0$.

Proof

This is where we use the two technical assumptions.

- Then (5) implies that for all $x \in \mathcal{D}, \tilde{\nu}^{T}(A x-b) \geq 0$.
- But \tilde{x} satisfies $\tilde{\nu}^{T}(A \tilde{x}-b)=0$, and since $\tilde{x} \in \operatorname{int} \mathcal{D}$, there are points in \mathcal{D} with $\tilde{\nu}^{T}(A x-b)<0$ unless $A^{T} \tilde{\nu}=0$.
- This contradicts our assumption that Rank $A=p$.

This means that we cannot have $\mu=0$ and ends the proof.

References
A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization : analysis, algorithms, and engineering applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics: Mathematical Programming Society, Philadelphia, PA, 2001.
N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395, 1984.
L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093-1096, 1979.
A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization. Nauka (published in English by John Wiley, Chichester, 1983), 1979.
Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.
Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.

