Optimisation Combinatoire et Convexe.

Approximation results

Today

- Semidefinite relaxations
- Lagrangian relaxations for general QCQPs
- Randomization
- Bounds on suboptimality (MAXCUT)
- Exact relaxations, \mathcal{S}-lemma
- Concentration arguments
- Approximate \mathcal{S}-lemma
- Problems on graphs

Convex Optimization

Convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0
\end{array}
$$

$x \in \mathbb{R}^{n}$ is optimization variable; $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex:

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

for all $x, y, 0 \leq \lambda \leq 1$

- includes LS, LP, QP, and many others
- like LS, LP, and QP, convex problems are fundamentally tractable

Nonconvex Problems

Nonconvexity makes problems essentially untractable...

- Sometimes the result of bad problem formulation
- Natural limitation: fixed transaction costs, binary communications, ...

What can be done?... Use convex optimization results to

- Get exact solutions in rare cases.
- Find bounds on the optimal value, by relaxation.
- Get "good" feasible points via randomization.

Nonconvex Problems

- Focus first on a specific class of problems: general QCQPs
- Large range of applications...

A generic QCQP can be written

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- If all P_{i} are p.s.d., this is a convex problem...
- We suppose at least one P_{i} is not p.s.d.

Example: Boolean Least Squares

Boolean least-squares problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- basic problem in digital communications
- could check all 2^{n} possible values of $x \ldots$
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

Example: Partitioning Problem

two-way partitioning problem described in §5.1.4 of the textbook

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

where $W \in \mathbf{S}^{n}$, with $W_{i i}=0$.

- a feasible x corresponds to the partition

$$
\{1, \ldots, n\}=\left\{i \mid x_{i}=-1\right\} \cup\left\{i \mid x_{i}=1\right\}
$$

- the matrix coefficient $W_{i j}$ can be interpreted as the cost of having the elements i and j in the same partition.
- the objective is to find the partition with least total cost
- classic particular instance: MAXCUT $\left(W_{i j} \geq 0\right)$

Convex Relaxation

The original QCQP

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

can be bounded by, after writing $X=x x^{T}$,

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X \succeq x x^{T} \\
& \operatorname{Rank}(X)=1
\end{array}
$$

the only nonconvex constraint is now $\operatorname{Rank}(X)=1$...

Convex Relaxation: Semidefinite Relaxation

- We can directly relax this last constraint, i.e. drop the nonconvex $\operatorname{Rank}(X)=1$ to keep only $X \succeq x x^{T}$
- The resulting program gives a lower bound on the optimal value

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X \succeq x x^{T}
\end{array}
$$

Tricky. . . Can be improved?

Lagrangian Relaxation

From the original problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

We can form the Lagrangian:

$$
L(x, \lambda)=x^{T}\left(P_{0}+\sum_{i=1}^{m} \lambda_{i} P_{i}\right) x+\left(q_{0}+\sum_{i=1}^{m} \lambda_{i} q_{i}\right)^{T} x+r_{0}+\sum_{i=1}^{m} \lambda_{i} r_{i}
$$

in the variables $x \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}_{+}^{m} \cdots$

Lagrangian Relaxation: Lagrangian

The dual can be computed explicitly as an (unconstrained) quadratic minimization problem, with:

$$
\inf _{x \in \mathbb{R}} x^{T} P x+q^{T} x+r=\left\{\begin{array}{l}
r-\frac{1}{4} q^{T} P^{\dagger} q, \quad \text { if } P \succeq 0 \text { and } q \in \mathcal{R}(P) \\
-\infty, \quad \text { otherwise }
\end{array}\right.
$$

we have:

$$
\begin{aligned}
\inf _{x} L(x, \lambda)= & -\frac{1}{4}\left(q_{0}+\sum_{i=1}^{m} \lambda_{i} q_{i}\right)^{T}\left(P_{0}+\sum_{i=1}^{m} \lambda_{i} P_{i}\right)^{\dagger}\left(q_{0}+\sum_{i=1}^{m} \lambda_{i} q_{i}\right) \\
& +\sum_{i=1}^{m} \lambda_{i} r_{i}+r_{0}
\end{aligned}
$$

where we recognize a Schur complement...

Lagrangian Relaxation: Dual

The dual of the QCQP is then given by:

$$
\begin{array}{llc}
\text { maximize } & \gamma+\sum_{i=1}^{m} \lambda_{i} r_{i}+r_{0} & \\
\text { subject to } & {\left[\begin{array}{cc}
\left(P_{0}+\sum_{i=1}^{m} \lambda_{i} P_{i}\right) & \left(q_{0}+\sum_{i=1}^{m} \lambda_{i} q_{i}\right) / 2 \\
\left(q_{0}+\sum_{i=1}^{m} \lambda_{i} q_{i}\right)^{T} / 2 & -\gamma
\end{array}\right] \succeq 0} \\
& \lambda_{i} \geq 0, \quad i=1, \ldots, m &
\end{array}
$$

which is a semidefinite program in the variable $\lambda \in \mathbb{R}^{m}$ and can be solved efficiently.

Use semidefinite duality to compute the dual of this last program?

Lagrangian Relaxation: Bidual

Taking the dual again, we get an SDP is given by

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
X & x^{T} \\
x & 1
\end{array}\right] \succeq 0}
\end{array}
$$

in the variables $X \in \mathbf{S}^{n}$ and $x \in \mathbb{R}^{n}$

- This is a convex relaxation of the original program
- We have recovered the semidefinite relaxation in an "automatic" way

Lagrangian Relaxation: Boolean LS

Using the previous technique, we can relax the original Boolean LS problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

and relax it as an SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(A X)+2 b^{T} A x+b^{T} b \\
\text { subject to } & {\left[\begin{array}{cc}
X & x^{T} \\
x & 1
\end{array}\right] \succeq 0} \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

this program then produces a lower bound on the optimal value of the original Boolean LS program

Lagrangian Relaxation: Partitioning

The partitioning problem defined above is

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

the variable x disappears from the relaxation, which becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(W X) \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

Feasible points?

- Lagrangian relaxations only provide lower bounds on the optimal value
- Can we compute good feasible points?
- Can we measure how suboptimal this lower bound is?

Randomization

The original QCQP

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

was relaxed into

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
X & x^{T} \\
x & 1
\end{array}\right] \succeq 0}
\end{array}
$$

- The last (Schur complement) constraint is equivalent to $X-x x^{T} \succeq 0$
- Hence, if x and X are the solution to the relaxed program, then $X-x x^{T}$ is a covariance matrix...

Randomization

- Pick x as a Gaussian variable with $x \sim \mathcal{N}\left(x, X-x x^{T}\right)$
- x will solve the QCQP " on average" over this distribution

In other words, it will satisfy

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{E}\left[x^{T} P_{0} x+q_{0}^{T} x+r_{0}\right] \\
\text { subject to } & \mathbf{E}\left[x^{T} P_{i} x+q_{i}^{T} x+r_{i}\right] \leq 0, \quad i=1, \ldots, m
\end{array}
$$

a good feasible point can then be obtained by sampling enough x. .

Linearization

Consider the constraint

$$
x^{T} P x+q^{T} x+r \leq 0
$$

we decompose the matrix P into its positive and negative parts

$$
P=P_{+}-P_{-}, \quad P_{+}, \quad P_{-} \succeq 0
$$

and original constraint becomes

$$
x^{T} P_{+} x+q_{0}^{T} x+r_{0} \leq x^{T} P_{-} x
$$

Linearization

Both sides of the inequality are now convex quadratic functions. We linearize the right hand side around an initial feasible point x_{0} to obtain

$$
x^{T} P_{+} x+q_{0}^{T} x+r_{0} \leq x^{(0) T} P_{-} x^{(0)}+2 x^{(0) T} P_{-}\left(x-x^{(0)}\right)
$$

- The right hand side is now an affine lower bound on the original function $x^{T} P _x$ (see $\S 3.1 .3$ in the book).
- The resulting constraint is convex and more conservative than the original one, hence the feasible set of the new problem will be a convex subset of the original feasible set
- We form a convex restriction of the problem

We can then solve the convex restriction to get a better feasible point $x^{(1)}$ and iterate. . .

Bounds on suboptimality

- In certain particular cases, it is possible to get a hard bound on the gap between the optimal value and the relaxation result
- A classical example is that of the MAXCUT bound

The MAXCUT problem is a particular case of the partitioning problem:

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

its Lagrangian relaxation is computed as:

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(W X) \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

Bounds on suboptimality: MAXCUT

Let X be a solution to this program

- we look for a feasible point by sampling a normal distribution $\mathcal{N}(0, X)$
- we convert each sample point x to a feasible point by rounding it to the nearest value in $\{-1,1\}$, i.e. taking

$$
\hat{x}=\operatorname{sgn}(x)
$$

crucially, when \hat{x} is sampled using that procedure, the expected value of the objective $\mathbf{E}\left[\hat{x}^{T} W x\right]$ can be computed explicitly:

$$
\mathbf{E}\left[\hat{x}^{T} W x\right]=\frac{2}{\pi} \sum_{i, j=1}^{n} W_{i j} \arcsin \left(X_{i j}\right)=\frac{2}{\pi} \operatorname{Tr}(W \arcsin (X))
$$

Bounds on suboptimality: MAXCUT

- We are guaranteed to reach this expected value $2 / \pi \operatorname{Tr}(W \arcsin (X))$ after sampling a few (feasible) points \hat{x}
- Hence we know that the optimal value $O P T$ of the MAXCUT problem is between $2 / \pi \operatorname{Tr}(W \arcsin (X))$ and $\operatorname{Tr}(W X)$

Furthermore, with $\arcsin (X) \succeq X$, we can simplify (and relax) the above expression to get:

$$
\frac{2}{\pi} \operatorname{Tr}(W X) \leq O P T \leq \operatorname{Tr}(W X)
$$

the procedure detailed above guarantees that we can find a feasible point at most $2 / \pi$ suboptimal

Bounds on suboptimality: MAXCUT

Proposition

MAXCUT approximation. Let $O P T$ be the optimal value of the partitioning problem

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

where $W \succeq 0$, and let $S D P$ be the optimal value of its Lagrangian relaxation

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(W X) \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

then we have $\frac{2}{\pi} \operatorname{Tr}(W X) \leq O P T \leq \operatorname{Tr}(W X)$.
Proof. Suppose we sample $x \sim \mathcal{N}(0, X)$ then take $\hat{x}=\boldsymbol{\operatorname { s g n }}(x)$. We get

$$
\mathbf{E}\left[\hat{x}^{T} W x\right]=\frac{2}{\pi} \sum_{i, j=1}^{n} W_{i j} \arcsin \left(X_{i j}\right)=\frac{2}{\pi} \operatorname{Tr}(W \arcsin (X))
$$

where $\arcsin (X)$ is taken elementwise, with

$$
\arcsin (X)_{i j}=X_{i j}+\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdots(2 k-1)}{2^{k} k!(2 k+1)} X_{i j}^{2 k+1}
$$

which means

$$
\arcsin (X)-X \succeq 0
$$

because if we define the elementwise matrix power $[X]^{k}$ such that

$$
[X]_{i j}^{k}=X_{i j}
$$

then $[X]^{k} \succeq 0$ when $X \succeq 0$. This finally means that

$$
\mathbf{E}\left[\hat{x}^{T} W x\right]=\frac{2}{\pi} \operatorname{Tr}(W \arcsin (X)) \geq \frac{2}{\pi} \operatorname{Tr}(W X)
$$

Numerical Example: Boolean LS

Boolean least-squares problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

with

$$
\begin{aligned}
\|A x-b\|^{2} & =x^{T} A^{T} A x-2 b^{T} A x+b^{T} b \\
& =\operatorname{Tr} A^{T} A X-2 b^{T} A^{T} x+b^{T} b
\end{aligned}
$$

where $X=x x^{T}$, hence can express BLS as

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 b^{T} A x+b^{T} b \\
\text { subject to } & X_{i i}=1, \quad X \succeq x x^{T}, \quad \operatorname{rank}(X)=1
\end{array}
$$

still a very hard problem

SDP relaxation for BLS

Using Lagrangian relaxation, with

$$
X \succeq x x^{T} \Longleftrightarrow\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

we obtained the SDP relaxation (with variables X, x)

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} A^{T} A X-2 b^{T} A^{T} x+b^{T} b \\
\text { subject to } & X_{i i}=1, \quad\left[\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right] \succeq 0
\end{array}
$$

- Optimal value of SDP gives lower bound for BLS
- If optimal matrix is rank one, we're done

Interpretation via randomization

- Can think of variables X, x in SDP relaxation as defining a normal distribution $z \sim \mathcal{N}\left(x, X-x x^{T}\right)$, with $\mathbf{E} z_{i}^{2}=1$
- SDP objective is $\mathbf{E}\|A z-b\|^{2}$
suggests randomized method for BLS:
- Find $X^{\mathrm{opt}}, x^{\mathrm{opt}}$, optimal for SDP relaxation
- Generate z from $\mathcal{N}\left(x^{\mathrm{opt}}, X^{\mathrm{opt}}-x^{\mathrm{opt}} x^{\mathrm{opt} T}\right)$
- Take $x=\operatorname{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Example

- (randomly chosen) parameters $A \in \mathbb{R}^{150 \times 100}, b \in \mathbb{R}^{150}$
- $x \in \mathbb{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize $\|A x-b\|$ s.t. $\|x\|^{2}=n$, then round yields objective 8.7% over SDP relaxation bound
randomized method: (using SDP optimal distribution)

- best of 20 samples: 3.1% over SDP bound
- best of 1000 samples: 2.6% over SDP bound

Example: Partitioning Problem

Example: Partitioning Problem

MAXCUT. Numerical example.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

the Lagrange dual of this problem is given by the SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

Partitioning: Lagrangian relaxation

the dual of this SDP is another SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} W X \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

the solution $X^{\text {opt }}$ gives a lower bound on the optimal value $p^{\text {opt }}$ of the partitioning problem

- solve the previous SDP to find $X^{\text {opt }}$ (and the bound $p^{\text {opt }}$)
- let v denote an eigenvector of X^{opt} associated with its largest eigenvalue
- now let

$$
\hat{x}=\operatorname{sgn}(v)
$$

the vector \hat{x} is our guess for a good partition

Partitioning: Randomization

Randomization.

- we generate independent samples $x^{(1)}, \ldots, x^{(K)}$ from a normal distribution with zero mean and covariance $X^{\text {opt }}$
- for each sample we consider the heuristic approximate solution

$$
\hat{x}^{(k)}=\operatorname{sgn}\left(x^{(k)}\right)
$$

- we then take the one with lowest cost

On a randomly chosen problem:

- The optimal SDP lower bound $p^{\text {opt }}$ is equal to -1641
- The simple $\operatorname{sgn}(x)$ heuristic gives a partition with total cost -1280

At this point, we can say that the optimal value is between -1641 and -1280

Partitioning: Numerical Example

Histogram of the objective obtained by the randomized heuristic, over 1000 samples: the minimum value reached here is -1328

Partitioning: Numerical Example

We know the optimum is between -1641 and -1328 .

Greedy method

We can improve these results a little bit using the following simple greedy heuristic

- Suppose the matrix $Y=\hat{x}^{T} W \hat{x}$ has a column j whose sum $\sum_{i=1}^{n} y_{i j}$ is positive.
- Switching \hat{x}_{j} to $-\hat{x}_{j}$ will decrease the objective by $2 \sum_{i=1}^{n} y_{i j}$.
- if we pick the column $y_{j_{0}}$ with largest sum, switch $\hat{x}_{j_{0}}$ and repeat until all column sums are negative, we decrease the objective.

Applying this to the SDP heuristic gives an objective value of -1372 , our best partition yet...

Hidden convexity, \mathcal{S}-lemma, . . .

\mathcal{S}-lemma

- In general, nonconvex quadratically constrained quadratic programming is hard.
- Yet, we have very efficient, very reliable algorithms to solve the following eigenvalue problem

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & x^{T} x=1
\end{array}
$$

with complexity $O\left(n^{2}\right)$ (computing a sequence of matrix vector products).

- Why is this one easy?
\mathcal{S}-lemma. SDP relaxations of Nonconvex QPs with one quadratic constraint (two in some cases) are exact, hence these programs can be solved in polynomial time.

\mathcal{S}-lemma

Geometrically, the set $\left(x^{T} A x, x^{T} B x\right)$, where $x \in \mathbb{R}^{n}$, describes a convex cone. This has important consequences for semidefinite relaxations.

Proposition

Quadratic convexity. Suppose $A, B \in \mathbf{S}_{n}$, then for all $X \succeq 0$, there exists $x \in \mathbb{R}^{n}$ with

$$
\begin{equation*}
x^{T} A x=\operatorname{Tr}(A X) \quad \text { and } \quad x^{T} B x=\operatorname{Tr}(B X) \tag{1}
\end{equation*}
$$

Proof. Suppose it is true for all $X \in \mathbf{S}_{+}^{n}$ with $2 \leq \operatorname{Rank} X \leq k$, i.e. there exists an x such that (1) holds. Let us show that it also holds if $\operatorname{Rank} X=k+1$.

A matrix $X \in \mathbf{S}_{+}^{n}$ with $\operatorname{Rank} X=k+1$ can be expressed as $X=y y^{T}+Z$ where $y \neq 0$ and $Z \in \mathbf{S}_{+}^{n}$ with $\operatorname{Rank} Z=k$. By assumption, there exists a z such that $\operatorname{Tr}(A Z)=z^{T} A z, \operatorname{Tr}(A Z)=z^{T} B z$. Therefore

$$
\operatorname{Tr}(A X)=\operatorname{Tr}\left(A\left(y y^{T}+z z^{T}\right)\right), \quad \operatorname{Tr}(B X)=\operatorname{Tr}\left(B\left(y y^{T}+z z^{T}\right)\right)
$$

$y y^{T}+z z^{T}$ has rank one or two, hence (1) by assumption.

It is therefore sufficient to prove the result if $\operatorname{Rank} X=2$. If $\operatorname{Rank} X=2$, we can factor X as $X=V V^{T}$ where $V \in \mathbb{R}^{n \times 2}$, with linearly independent columns v_{1} and v_{2}.

Without loss of generality we can assume that $V^{T} A V$ is diagonal. (If $V^{T} A V$ is not diagonal we replace V with $V P$ where $V^{T} A V=P \operatorname{diag}(\lambda) P^{T}$ is the eigenvalue decomposition of $V^{T} A V$.) We will write $V^{T} A V$ and $V^{T} B V$ as

$$
V^{T} A V=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad V^{T} B V=\left[\begin{array}{cc}
\sigma_{1} & \gamma \\
\gamma & \sigma_{2}
\end{array}\right],
$$

and define

$$
w=\left[\begin{array}{c}
\operatorname{Tr}(A X) \\
\operatorname{Tr}(B X)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1}+\lambda_{2} \\
\sigma_{1}+\sigma_{2}
\end{array}\right] .
$$

We need to show that $w=\left(x^{T} A x, x^{T} B x\right)$ for some x. We distinguish two cases.

- First, assume $(0, \gamma)$ is a linear combination of the vectors $\left(\lambda_{1}, \sigma_{1}\right)$ and $\left(\lambda_{2}, \sigma_{2}\right)$:

$$
0=z_{1} \lambda_{1}+z_{2} \lambda_{2}, \quad \gamma=z_{1} \sigma_{1}+z_{2} \sigma_{2},
$$

for some z_{1}, z_{2}. In this case we choose $x=\alpha v_{1}+\beta v_{2}$, where α and β are determined by solving two quadratic equations in two variables

$$
\begin{equation*}
\alpha^{2}+2 \alpha \beta z_{1}=1, \quad \beta^{2}+2 \alpha \beta z_{2}=1 \tag{2}
\end{equation*}
$$

This will give the desired result, since

$$
\begin{aligned}
& {\left[\begin{array}{l}
\left(\alpha v_{1}+\beta v_{2}\right)^{T} A\left(\alpha v_{1}+\beta v_{2}\right) \\
\left(\alpha v_{1}+\beta v_{2}\right)^{T} B\left(\alpha v_{1}+\beta v_{2}\right)
\end{array}\right]} \\
& =\alpha^{2}\left[\begin{array}{l}
\lambda_{1} \\
\sigma_{1}
\end{array}\right]+2 \alpha \beta\left[\begin{array}{l}
0 \\
\gamma
\end{array}\right]+\beta^{2}\left[\begin{array}{l}
\lambda_{2} \\
\sigma_{2}
\end{array}\right] \\
& =\left(\alpha^{2}+2 \alpha \beta z_{1}\right)\left[\begin{array}{l}
\lambda_{1} \\
\sigma_{1}
\end{array}\right]+\left(\beta^{2}+2 \alpha \beta z_{2}\right)\left[\begin{array}{l}
\lambda_{2} \\
\sigma_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\lambda_{1}+\lambda_{2} \\
\sigma_{1}+\sigma_{2}
\end{array}\right]
\end{aligned}
$$

It remains to show that the equations (2) are solvable. To see this, we first note
that α and β must be nonzero, so we can write the equations equivalently as

$$
\alpha^{2}\left(1+2(\beta / \alpha) z_{1}\right)=1, \quad(\beta / \alpha)^{2}+2(\beta / \alpha)\left(z_{2}-z_{1}\right)=1
$$

The equation $t^{2}+2 t\left(z_{2}-z_{1}\right)=1$ has a positive and a negative root. At least one of these roots (the root with the same sign as z_{1}) satisfies $1+2 t z_{1}>0$, so we can choose

$$
\alpha= \pm 1 / \sqrt{1+2 t z_{1}}, \quad \beta=t \alpha
$$

This yields two solutions (α, β) that satisfy (2). (If both roots of $t^{2}+2 t\left(z_{2}-z_{1}\right)=1$ satisfy $1+2 t z_{1}>0$, we obtain four solutions.)

- Next, assume that $(0, \gamma)$ is not a linear combination of $\left(\lambda_{1}, \sigma_{1}\right)$ and $\left(\lambda_{2}, \sigma_{2}\right)$. In particular, this means that $\left(\lambda_{1}, \sigma_{1}\right)$ and $\left(\lambda_{2}, \sigma_{2}\right)$ are linearly dependent. Therefore their sum $w=\left(\lambda_{1}+\lambda_{2}, \sigma_{1}+\sigma_{2}\right)$ is a nonnegative multiple of $\left(\lambda_{1}, \sigma_{1}\right)$, or $\left(\lambda_{2}, \sigma_{2}\right)$, or both. If $w=\alpha^{2}\left(\lambda_{1}, \sigma_{1}\right)$ for some α, we can choose $x=\alpha v_{1}$. If $w=\beta^{2}\left(\lambda_{2}, \sigma_{2}\right)$ for some β, we can choose $x=\beta v_{2}$.

\mathcal{S}-lemma

Strong duality.

- This shows directly that strong duality holds for

$$
\begin{array}{ll}
\text { maximize } & x^{T} A x \\
\text { subject to } & x^{T} B x \leq 0
\end{array}
$$

since the optimum value of this program is equal to that of its bidual, which is a semidefinite program in X.

- Some extensions of this result are possible, e.g. the inhomogeneous case

$$
\begin{array}{ll}
\text { maximize } & x^{T} A x+a^{T} x \\
\text { subject to } & x^{T} B x+b^{T} x+c=0
\end{array}
$$

or the normalized case (known as Brickman's theorem)

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & x^{T} B x \leq 0 \\
& x^{T} x=1
\end{array}
$$

Concentration inequalities, approximate \mathcal{S}-lemma, etc. . .

Concentration inequalities

- We can extend randomization arguments to constrained problems.
- Concentration inequalities allow us to bound the probability that a constraint is feasible. Basically, if we match the constraints/objective on average, we can find w.h.p. a feasible point whose objective value is not too far off.

Theorem

Gaussian concentration. Suppose $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous with constant L with respect to the Euclidean norm, i.e.

$$
|f(y)-f(x)| \leq L\|x-y\|_{2}, \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

then if $g_{i}, i=1, \ldots, n$ are i.i.d. Gaussian variables with $g_{i} \sim \mathcal{N}(0,1)$, we have

$$
\operatorname{Prob}[|M-f(g)| \geq L t] \leq \exp \left(-t^{2} / 2\right)
$$

where $M=\mathbf{E}[f(g)]$ or its median.

Concentration inequalities

Similar concentration results also exist for binary random variables.

Theorem

Bernstein inequality. Let $u_{i} \in\{-1,1\}$ be i.i.d. random variables with $\mathbf{E}\left[u_{i}\right]=0$, for any $a \in \mathbb{R}^{n}$ we have

$$
\operatorname{Prob}\left[\left|a^{T} u\right| \geq t\|a\|_{2}\right] \leq \exp \left(-t^{2} / 4\right)
$$

Approximate \mathcal{S}-lemma

We can show the following result extending the \mathcal{S}-lemma to approximate the case with multiple quadratic constraints. (Inhomogeneous extensions are possible).

Theorem

Approximate \mathcal{S}-lemma. Call OPT the optimal value of the following quadratic optimization problems

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & x^{T} A_{i} x \leq c_{i}, \quad i=1, \ldots, m
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, where the matrix $A \in \mathbf{S}_{n}$ is arbitrary, $c_{i}>0$, and $A_{i} \succeq 0$. Call SDP the optimal value of the semidefinite program (we assume strong duality holds and $S D P<\infty$)

$$
\begin{array}{ll}
\text { maximize } & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right), \quad i=1, \ldots, m
\end{array}
$$

in the variable $X \in \mathbf{S}_{n}$. Then $O P T \leq S D P \leq 2 \ln \left(2 \sum_{i=1}^{m} \operatorname{Rank}\left(A_{i}\right)\right) O P T$.

Proof. We write X an optimal solution to SDP and $X^{1 / 2} A X^{1 / 2}=U D U^{T}$, the eigenvalue decomposition of $X^{1 / 2} A X^{1 / 2}$, with D diagonal and U orthogonal. We have, by construction

$$
\operatorname{Tr}(D)=\operatorname{Tr}\left(U D U^{T}\right)=\operatorname{Tr}\left(X^{1 / 2} A X^{1 / 2}\right)=\operatorname{Tr}(A X)=S D P
$$

We let $\xi_{i} \in\{-1,1\}$ be i.i.d. random variables with $\mathbf{E}[\xi]=0$. We define $\eta=X^{1 / 2} U \xi$, and write $D_{i}=U^{T} X^{1 / 2} A_{i} X^{1 / 2} U$, such that

$$
\operatorname{Tr}\left(D_{i}\right)=\operatorname{Tr}\left(U^{T} X^{1 / 2} A_{i} X^{1 / 2} U\right)=\operatorname{Tr}\left(X^{1 / 2} A_{i} X^{1 / 2}\right)=\operatorname{Tr}\left(A_{i} X\right) \leq c_{i}
$$

this means

$$
\begin{aligned}
\eta^{T} A \eta & =\xi^{T} U^{T} X^{1 / 2} A X^{1 / 2} U \xi \\
& =\xi^{T} U^{T} U D U^{T} U \xi \\
& =\xi^{T} D \xi=\operatorname{Tr}(D)=S D P
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\mathbf{E}\left[\eta^{T} A_{i} \eta\right] & =\mathbf{E}\left[\xi^{T} U^{T} X^{1 / 2} A_{i} X^{1 / 2} U \xi\right] \\
& =\operatorname{Tr}\left(U^{T} X^{1 / 2} A_{i} X^{1 / 2} U\right)=\operatorname{Tr}\left(A_{i} X\right) \leq c_{i}
\end{aligned}
$$

This shows that the vector η solves the SDP "on average". We now show how to construct vectors that satisfy approximately solve the QP with high probability.
We can write

$$
D_{i}=\sum_{j=1}^{k} d_{j} d_{j}^{T}, \quad k=\boldsymbol{\operatorname { R a n k }}\left(D_{i}\right)=\boldsymbol{\operatorname { R a n k }}\left(A_{i}\right),
$$

Using the previous concentration inequality

$$
\operatorname{Prob}\left[\left|d_{j}^{T} \xi\right| \geq \sqrt{t}\left\|d_{j}\right\|_{2}\right] \leq 2 \exp (-t / 2),
$$

now, for each given ξ, if $\xi^{T} D_{i} \xi \geq t \sum_{j=1}^{k}\left\|d_{j}\right\|_{2}^{2}$ then for at least for one j, we have $\left|d_{j}^{T} \xi\right| \geq \sqrt{t}\left\|d_{j}\right\|_{2}$, hence

$$
\begin{aligned}
\operatorname{Prob}\left[\xi^{T} D_{i} \xi \geq t \sum_{j=1}^{k}\left\|d_{j}\right\|_{2}^{2}\right] & \leq \sum_{i=1}^{k} \operatorname{Prob}\left[\left|d_{j}^{T} \xi\right| \geq \sqrt{t}\left\|d_{j}\right\|_{2}\right] \\
& \leq 2 \operatorname{Rank}\left(D_{i}\right) \exp (-t / 2)
\end{aligned}
$$

Now, we have $\sum_{j=1}^{k}\left\|d_{j}\right\|_{2}^{2}=\operatorname{Tr}\left(\sum_{j=1}^{k} d_{j} d_{j}^{T}\right)=\operatorname{Tr}\left(D_{i}\right) \leq c_{i}$. Hence we have showed

$$
\operatorname{Prob}\left[\eta^{T} A_{i} \eta \geq t c_{i}\right] \leq 2 \boldsymbol{\operatorname { R a n k }}\left(A_{i}\right) \exp (-t / 2)
$$

Let $\delta>0$ and

$$
\Theta=2 \ln \left(\frac{\sum_{i=1}^{m} \operatorname{Rank}\left(A_{i}\right)}{1-\delta}\right)
$$

using union bounds, with probability $\delta>0$

$$
\Theta^{-1 / 2} \eta
$$

will be a feasible point of the QP, reaching an objective value of $\Theta^{-1} S D P$, hence

$$
O P T \leq S D P \leq 2 \ln \left(2 \sum_{i=1}^{m} \boldsymbol{\operatorname { R a n k }}\left(A_{i}\right)\right) O P T
$$

