Optimisation Combinatoire et Convexe.

Approximation results

- Semidefinite relaxations
- Lagrangian relaxations for general QCQPs
- Randomization
- Bounds on suboptimality (MAXCUT)
- Exact relaxations, S-lemma
- Concentration arguments
- Approximate *S*-lemma
- Problems on graphs

Convex problem:

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_1(x) \leq 0, \dots, f_m(x) \leq 0 \end{array}$$

 $x \in \mathbb{R}^n$ is optimization variable; $f_i : \mathbb{R}^n \to \mathbb{R}$ are **convex**:

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

for all x, y, $0 \le \lambda \le 1$

- includes LS, LP, QP, and many others
- like LS, LP, and QP, convex problems are **fundamentally tractable**

Nonconvexity makes problems essentially untractable...

- Sometimes the result of bad problem formulation
- Natural limitation: fixed transaction costs, binary communications, ...

What can be done?... Use convex optimization results to

- Get exact solutions in rare cases.
- Find bounds on the optimal value, by **relaxation**.
- Get "good" feasible points via **randomization**.

- Focus first on a specific class of problems: general QCQPs
- Large range of applications...
- A generic QCQP can be written

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

- If all P_i are p.s.d., this is a convex problem...
- We suppose at least one P_i is not p.s.d.

Boolean least-squares problem:

minimize
$$\|Ax - b\|^2$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- basic problem in digital communications
- could check all 2^n possible values of x . . .
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

Example: Partitioning Problem

two-way partitioning problem described in §5.1.4 of the textbook

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

where $W \in \mathbf{S}^n$, with $W_{ii} = 0$.

 \blacksquare a feasible x corresponds to the partition

$$\{1, \dots, n\} = \{i \mid x_i = -1\} \cup \{i \mid x_i = 1\}$$

- the matrix coefficient W_{ij} can be interpreted as the cost of having the elements i and j in the same partition.
- the objective is to find the partition with least total cost
- classic particular instance: MAXCUT $(W_{ij} \ge 0)$

The original QCQP

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

can be bounded by, after writing $X = xx^T$,

minimize
$$\operatorname{Tr}(XP_0) + q_0^T x + r_0$$

subject to $\operatorname{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$
 $X \succeq xx^T$
 $\operatorname{Rank}(X) = 1$

the only nonconvex constraint is now $\operatorname{\mathbf{Rank}}(X) = 1...$

A. d'Aspremont. M1 ENS.

Convex Relaxation: Semidefinite Relaxation

- We can directly relax this last constraint, i.e. drop the nonconvex $\mathbf{Rank}(X) = 1$ to keep only $X \succeq xx^T$
- The resulting program gives a lower bound on the optimal value

minimize
$$\operatorname{Tr}(XP_0) + q_0^T x + r_0$$

subject to $\operatorname{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$
 $X \succeq xx^T$

Tricky... Can be improved?

From the original problem

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

We can form the Lagrangian:

$$L(x,\lambda) = x^T \left(P_0 + \sum_{i=1}^m \lambda_i P_i \right) x + \left(q_0 + \sum_{i=1}^m \lambda_i q_i \right)^T x + r_0 + \sum_{i=1}^m \lambda_i r_i$$

in the variables $x\in \mathbb{R}^n$ and $\lambda\in \mathbb{R}^m_+...$

The dual can be computed explicitly as an (unconstrained) quadratic minimization problem, with:

$$\inf_{x \in \mathbb{R}} x^T P x + q^T x + r = \begin{cases} r - \frac{1}{4} q^T P^{\dagger} q, & \text{if } P \succeq 0 \text{ and } q \in \mathcal{R}(P) \\ -\infty, & \text{otherwise} \end{cases}$$

we have:

$$\inf_{x} L(x,\lambda) = -\frac{1}{4} (q_{0} + \sum_{i=1}^{m} \lambda_{i} q_{i})^{T} (P_{0} + \sum_{i=1}^{m} \lambda_{i} P_{i})^{\dagger} (q_{0} + \sum_{i=1}^{m} \lambda_{i} q_{i}) + \sum_{i=1}^{m} \lambda_{i} r_{i} + r_{0}$$

where we recognize a Schur complement...

A. d'Aspremont. M1 ENS.

The dual of the QCQP is then given by:

$$\begin{array}{ll} \text{maximize} & \gamma + \sum_{i=1}^{m} \lambda_i r_i + r_0 \\ \text{subject to} & \begin{bmatrix} (P_0 + \sum_{i=1}^{m} \lambda_i P_i) & (q_0 + \sum_{i=1}^{m} \lambda_i q_i)/2 \\ (q_0 + \sum_{i=1}^{m} \lambda_i q_i)^T/2 & -\gamma \end{bmatrix} \succeq 0 \\ \lambda_i \ge 0, \quad i = 1, \dots, m \end{array}$$

which is a semidefinite program in the variable $\lambda \in \mathbb{R}^m$ and can be solved efficiently.

Use semidefinite duality to compute the dual of this last program?

Taking the dual again, we get an SDP is given by

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr}(XP_0) + q_0^T x + r_0\\ \text{subject to} & \mathbf{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m\\ \begin{bmatrix} X & x^T\\ x & 1 \end{bmatrix} \succeq 0 \end{array}$$

in the variables $X \in \mathbf{S}^n$ and $x \in \mathbb{R}^n$

- This is a convex relaxation of the original program
- We have recovered the semidefinite relaxation in an "automatic" way

Using the previous technique, we can relax the original Boolean LS problem

$$\begin{array}{ll} \mbox{minimize} & \|Ax-b\|^2 \\ \mbox{subject to} & x_i^2 = 1, \quad i = 1, \ldots, n \end{array}$$

and relax it as an SDP

minimize
$$\operatorname{Tr}(AX) + 2b^T Ax + b^T b$$

subject to $\begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0$
 $X_{ii} = 1, \quad i = 1, \dots, n$

this program then produces a lower bound on the optimal value of the original Boolean LS program

The partitioning problem defined above is

minimize
$$x^TWx$$

subject to $x_i^2=1, \quad i=1,\ldots,n$

the variable x disappears from the relaxation, which becomes

minimize
$$\operatorname{Tr}(WX)$$

subject to $X \succeq 0$
 $X_{ii} = 1, \quad i = 1, \dots, n$

- Lagrangian relaxations only provide lower bounds on the optimal value
- Can we compute good feasible points?
- Can we measure how suboptimal this lower bound is?

The original QCQP

minimize
$$x^T P_0 x + q_0^T x + r_0$$

subject to $x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$

was relaxed into

minimize
$$\operatorname{Tr}(XP_0) + q_0^T x + r_0$$

subject to $\operatorname{Tr}(XP_i) + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m$
 $\begin{bmatrix} X & x^T \\ x & 1 \end{bmatrix} \succeq 0$

• The last (Schur complement) constraint is equivalent to $X - xx^T \succeq 0$

• Hence, if x and X are the solution to the relaxed program, then $X - xx^T$ is a covariance matrix...

- Pick x as a Gaussian variable with $x \sim \mathcal{N}(x, X xx^T)$
- x will solve the QCQP "on average" over this distribution

In other words, it will satisfy

minimize
$$\mathbf{E}[x^T P_0 x + q_0^T x + r_0]$$

subject to $\mathbf{E}[x^T P_i x + q_i^T x + r_i] \le 0, \quad i = 1, \dots, m$

a good feasible point can then be obtained by sampling enough x...

Consider the constraint

$$x^T P x + q^T x + r \le 0$$

we decompose the matrix \boldsymbol{P} into its positive and negative parts

$$P = P_+ - P_-, \quad P_+, \ P_- \succeq 0$$

and original constraint becomes

$$x^{T}P_{+}x + q_{0}^{T}x + r_{0} \le x^{T}P_{-}x$$

Both sides of the inequality are now convex quadratic functions. We linearize the right hand side around an initial feasible point x_0 to obtain

$$x^{T}P_{+}x + q_{0}^{T}x + r_{0} \le x^{(0)T}P_{-}x^{(0)} + 2x^{(0)T}P_{-}(x - x^{(0)})$$

• The right hand side is now an affine lower bound on the original function $x^T P_- x$ (see §3.1.3 in the book).

- The resulting constraint is convex and more conservative than the original one, hence the feasible set of the new problem will be a convex subset of the original feasible set
- We form a *convex restriction* of the problem

We can then solve the convex restriction to get a better feasible point $x^{(1)}$ and iterate. . .

- In certain particular cases, it is possible to get a hard bound on the gap between the optimal value and the relaxation result
- A classical example is that of the MAXCUT bound

The MAXCUT problem is a particular case of the partitioning problem:

maximize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

its Lagrangian relaxation is computed as:

$$\begin{array}{ll} \text{maximize} & \mathbf{Tr}(WX) \\ \text{subject to} & X \succeq 0 \\ & X_{ii} = 1, \quad i = 1, \dots, n \end{array}$$

Bounds on suboptimality: MAXCUT

Let \boldsymbol{X} be a solution to this program

- we look for a feasible point by sampling a normal distribution $\mathcal{N}(0,X)$
- we convert each sample point x to a feasible point by rounding it to the nearest value in $\{-1,1\}$, i.e. taking

$$\hat{x} = \mathbf{sgn}(x)$$

crucially, when \hat{x} is sampled using that procedure, the expected value of the objective $\mathbf{E}[\hat{x}^T W x]$ can be computed explicitly:

$$\mathbf{E}[\hat{x}^T W x] = \frac{2}{\pi} \sum_{i,j=1}^n W_{ij} \operatorname{arcsin}(X_{ij}) = \frac{2}{\pi} \operatorname{Tr}(W \operatorname{arcsin}(X))$$

- We are guaranteed to reach this expected value $2/\pi \operatorname{Tr}(W \operatorname{arcsin}(X))$ after sampling a few (feasible) points \hat{x}
- Hence we know that the optimal value OPT of the MAXCUT problem is between $2/\pi \operatorname{Tr}(W \operatorname{arcsin}(X))$ and $\operatorname{Tr}(WX)$

Furthermore, with $\operatorname{arcsin}(X) \succeq X$, we can simplify (and relax) the above expression to get:

$$\frac{2}{\pi}\operatorname{Tr}(WX) \le OPT \le \operatorname{Tr}(WX)$$

the procedure detailed above guarantees that we can find a feasible point at most $2/\pi$ suboptimal

Proposition

MAXCUT approximation. Let *OPT* be the optimal value of the partitioning problem

maximize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

where $W \succeq 0$, and let SDP be the optimal value of its Lagrangian relaxation

maximize
$$\operatorname{Tr}(WX)$$

subject to $X \succeq 0$
 $X_{ii} = 1, \quad i = 1, \dots, n$

then we have $\frac{2}{\pi} \operatorname{Tr}(WX) \leq OPT \leq \operatorname{Tr}(WX)$.

Proof. Suppose we sample $x \sim \mathcal{N}(0, X)$ then take $\hat{x} = \mathbf{sgn}(x)$. We get

$$\mathbf{E}[\hat{x}^T W x] = \frac{2}{\pi} \sum_{i,j=1}^n W_{ij} \operatorname{arcsin}(X_{ij}) = \frac{2}{\pi} \operatorname{Tr}(W \operatorname{arcsin}(X))$$

A. d'Aspremont. M1 ENS.

where $\operatorname{arcsin}(X)$ is taken elementwise, with

$$\arcsin(X)_{ij} = X_{ij} + \sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdots (2k-1)}{2^k k! (2k+1)} X_{ij}^{2k+1}$$

which means

$$\operatorname{arcsin}(X) - X \succeq 0$$

because if we define the **elementwise matrix power** $[X]^k$ such that

 $[X]_{ij}^k = X_{ij}$

then $[X]^k \succeq 0$ when $X \succeq 0$. This finally means that

$$\mathbf{E}[\hat{x}^T W x] = \frac{2}{\pi} \mathbf{Tr}(W \operatorname{arcsin}(X)) \ge \frac{2}{\pi} \mathbf{Tr}(W X) \quad \bullet$$

Boolean least-squares problem:

$$\begin{array}{ll} \mbox{minimize} & \|Ax-b\|^2 \\ \mbox{subject to} & x_i^2 = 1, \quad i = 1, \ldots, n \end{array}$$

with

$$||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

= $\mathbf{Tr} A^T A X - 2b^T A^T x + b^T b$

where $X = xx^T$, hence can express BLS as

minimize
$$\operatorname{Tr} A^T A X - 2b^T A x + b^T b$$

subject to $X_{ii} = 1, \quad X \succeq x x^T, \quad \operatorname{rank}(X) = 1$

... still a very hard problem

A. d'Aspremont. M1 ENS.

SDP relaxation for **BLS**

Using Lagrangian relaxation, with

$$X \succeq x x^T \iff \left[\begin{array}{cc} X & x \\ x^T & 1 \end{array} \right] \succeq 0$$

we obtained the **SDP relaxation** (with variables X, x)

minimize
$$\operatorname{Tr} A^T A X - 2b^T A^T x + b^T b$$

subject to $X_{ii} = 1, \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

- Optimal value of SDP gives lower bound for BLS
- If optimal matrix is rank one, we're done

- Can think of variables X, x in SDP relaxation as defining a normal distribution $z \sim \mathcal{N}(x, X xx^T)$, with $\mathbf{E} z_i^2 = 1$
- SDP objective is $\mathbf{E} \|Az b\|^2$

suggests randomized method for BLS:

- Find X^{opt} , x^{opt} , optimal for SDP relaxation
- Generate z from $\mathcal{N}(x^{\text{opt}}, X^{\text{opt}} x^{\text{opt}}x^{\text{opt}T})$
- Take $x = \mathbf{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Example

- (randomly chosen) parameters $A \in \mathbb{R}^{150 \times 100}$, $b \in \mathbb{R}^{150}$
- $x \in \mathbb{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize ||Ax - b|| s.t. $||x||^2 = n$, then round yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

- \blacksquare best of 20 samples: 3.1% over SDP bound
- **•** best of 1000 samples: 2.6% over SDP bound

Example: Partitioning Problem

MAXCUT. Numerical example.

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

the Lagrange dual of this problem is given by the SDP:

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu\\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$$

Partitioning: Lagrangian relaxation

the dual of this SDP is another SDP

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr} \, WX \\ \text{subject to} & X \succeq 0 \\ & X_{ii} = 1, \quad i = 1, \dots, n \end{array}$$

the solution $X^{\rm opt}$ gives a lower bound on the optimal value $p^{\rm opt}$ of the partitioning problem

- solve the previous SDP to find X^{opt} (and the bound p^{opt})
- let v denote an eigenvector of X^{opt} associated with its largest eigenvalue

now let

$$\hat{x} = \mathbf{sgn}(v)$$

the vector $\hat{\boldsymbol{x}}$ is our guess for a good partition

Randomization.

- we generate independent samples $x^{(1)}, \ldots, x^{(K)}$ from a normal distribution with zero mean and covariance X^{opt}
- for each sample we consider the heuristic approximate solution

 $\hat{x}^{(k)} = \mathbf{sgn}(x^{(k)})$

we then take the one with lowest cost

On a randomly chosen problem:

- The optimal SDP lower bound p^{opt} is equal to -1641
- The simple sgn(x) heuristic gives a partition with total cost -1280

At this point, we can say that the optimal value is between -1641 and -1280

Partitioning: Numerical Example

Histogram of the objective obtained by the randomized heuristic, over 1000 samples: the minimum value reached here is -1328

Partitioning: Numerical Example

We know the optimum is between -1641 and -1328.

We can improve these results a little bit using the following simple **greedy** heuristic

- Suppose the matrix $Y = \hat{x}^T W \hat{x}$ has a column j whose sum $\sum_{i=1}^n y_{ij}$ is positive.
- Switching \hat{x}_j to $-\hat{x}_j$ will decrease the objective by $2\sum_{i=1}^n y_{ij}$.
- if we pick the column y_{j_0} with largest sum, switch \hat{x}_{j_0} and repeat until all column sums are negative, we decrease the objective.

Applying this to the SDP heuristic gives an objective value of -1372, our best partition yet...

Hidden convexity, S-lemma, . . .

- In general, nonconvex quadratically constrained quadratic programming is hard.
- Yet, we have very efficient, very reliable algorithms to solve the following eigenvalue problem

maximize $x^T A x$ subject to $x^T x = 1$

with complexity O(n²) (computing a sequence of matrix vector products).
Why is this one easy?

S-lemma. SDP relaxations of Nonconvex QPs with one quadratic constraint (two in some cases) are exact, hence these programs can be solved in polynomial time.

\mathcal{S} -lemma

Geometrically, the set $(x^T A x, x^T B x)$, where $x \in \mathbb{R}^n$, describes a **convex cone**. This has important consequences for semidefinite relaxations.

Proposition

Quadratic convexity. Suppose $A, B \in S_n$, then for all $X \succeq 0$, there exists $x \in \mathbb{R}^n$ with

$$x^{T}Ax = \mathbf{Tr}(AX)$$
 and $x^{T}Bx = \mathbf{Tr}(BX).$ (1)

Proof. Suppose it is true for all $X \in \mathbf{S}^n_+$ with $2 \leq \operatorname{\mathbf{Rank}} X \leq k$, i.e. there exists an x such that (1) holds. Let us show that it also holds if $\operatorname{\mathbf{Rank}} X = k + 1$.

A matrix $X \in \mathbf{S}^n_+$ with $\operatorname{\mathbf{Rank}} X = k + 1$ can be expressed as $X = yy^T + Z$ where $y \neq 0$ and $Z \in \mathbf{S}^n_+$ with $\operatorname{\mathbf{Rank}} Z = k$. By assumption, there exists a z such that $\operatorname{\mathbf{Tr}}(AZ) = z^T A z$, $\operatorname{\mathbf{Tr}}(AZ) = z^T B z$. Therefore

$$\mathbf{Tr}(AX) = \mathbf{Tr}(A(yy^T + zz^T)), \qquad \mathbf{Tr}(BX) = \mathbf{Tr}(B(yy^T + zz^T)).$$

 $yy^T + zz^T$ has rank one or two, hence (1) by assumption.

A. d'Aspremont. M1 ENS.

It is therefore sufficient to prove the result if $\operatorname{Rank} X = 2$. If $\operatorname{Rank} X = 2$, we can factor X as $X = VV^T$ where $V \in \mathbb{R}^{n \times 2}$, with linearly independent columns v_1 and v_2 .

Without loss of generality we can assume that $V^T A V$ is diagonal. (If $V^T A V$ is not diagonal we replace V with VP where $V^T A V = P \operatorname{diag}(\lambda) P^T$ is the eigenvalue decomposition of $V^T A V$.) We will write $V^T A V$ and $V^T B V$ as

$$V^{T}AV = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \qquad V^{T}BV = \begin{bmatrix} \sigma_{1} & \gamma \\ \gamma & \sigma_{2} \end{bmatrix},$$

and define

$$w = \begin{bmatrix} \mathbf{Tr}(AX) \\ \mathbf{Tr}(BX) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ \sigma_1 + \sigma_2 \end{bmatrix}.$$

We need to show that $w = (x^T A x, x^T B x)$ for some x. We distinguish two cases.

First, assume $(0, \gamma)$ is a linear combination of the vectors (λ_1, σ_1) and (λ_2, σ_2) :

$$0 = z_1 \lambda_1 + z_2 \lambda_2, \qquad \gamma = z_1 \sigma_1 + z_2 \sigma_2,$$

for some z_1 , z_2 . In this case we choose $x = \alpha v_1 + \beta v_2$, where α and β are determined by solving two quadratic equations in two variables

$$\alpha^{2} + 2\alpha\beta z_{1} = 1, \qquad \beta^{2} + 2\alpha\beta z_{2} = 1.$$
 (2)

This will give the desired result, since

$$\begin{bmatrix} (\alpha v_1 + \beta v_2)^T A(\alpha v_1 + \beta v_2) \\ (\alpha v_1 + \beta v_2)^T B(\alpha v_1 + \beta v_2) \end{bmatrix}$$
$$= \alpha^2 \begin{bmatrix} \lambda_1 \\ \sigma_1 \end{bmatrix} + 2\alpha\beta \begin{bmatrix} 0 \\ \gamma \end{bmatrix} + \beta^2 \begin{bmatrix} \lambda_2 \\ \sigma_2 \end{bmatrix}$$
$$= (\alpha^2 + 2\alpha\beta z_1) \begin{bmatrix} \lambda_1 \\ \sigma_1 \end{bmatrix} + (\beta^2 + 2\alpha\beta z_2) \begin{bmatrix} \lambda_2 \\ \sigma_2 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 + \lambda_2 \\ \sigma_1 + \sigma_2 \end{bmatrix}.$$

It remains to show that the equations (2) are solvable. To see this, we first note

that α and β must be nonzero, so we can write the equations equivalently as

$$\alpha^{2}(1+2(\beta/\alpha)z_{1})=1,$$
 $(\beta/\alpha)^{2}+2(\beta/\alpha)(z_{2}-z_{1})=1.$

The equation $t^2 + 2t(z_2 - z_1) = 1$ has a positive and a negative root. At least one of these roots (the root with the same sign as z_1) satisfies $1 + 2tz_1 > 0$, so we can choose

$$\alpha = \pm 1/\sqrt{1 + 2tz_1}, \qquad \beta = t\alpha.$$

This yields two solutions (α, β) that satisfy (2). (If both roots of $t^2 + 2t(z_2 - z_1) = 1$ satisfy $1 + 2tz_1 > 0$, we obtain four solutions.)

Next, assume that $(0, \gamma)$ is not a linear combination of (λ_1, σ_1) and (λ_2, σ_2) . In particular, this means that (λ_1, σ_1) and (λ_2, σ_2) are linearly dependent. Therefore their sum $w = (\lambda_1 + \lambda_2, \sigma_1 + \sigma_2)$ is a nonnegative multiple of (λ_1, σ_1) , or (λ_2, σ_2) , or both. If $w = \alpha^2(\lambda_1, \sigma_1)$ for some α , we can choose $x = \alpha v_1$. If $w = \beta^2(\lambda_2, \sigma_2)$ for some β , we can choose $x = \beta v_2$.

\mathcal{S} -lemma

Strong duality.

This shows directly that strong duality holds for

 $\begin{array}{ll} \text{maximize} & x^T A x\\ \text{subject to} & x^T B x \leq 0 \end{array}$

since the optimum value of this program is equal to that of its bidual, which is a semidefinite program in X.

Some extensions of this result are possible, e.g. the inhomogeneous case

maximize $x^T A x + a^T x$ subject to $x^T B x + b^T x + c = 0$

or the normalized case (known as Brickman's theorem)

maximize
$$x^T A x$$

subject to $x^T B x \leq 0$
 $x^T x = 1$

Concentration inequalities, approximate *S*-lemma, etc. . .

Concentration inequalities

- We can extend randomization arguments to constrained problems.
- Concentration inequalities allow us to bound the probability that a constraint is feasible. Basically, if we match the constraints/objective on average, we can find w.h.p. a feasible point whose objective value is not too far off.

Theorem

Gaussian concentration. Suppose $f(x) : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz continuous with constant L with respect to the Euclidean norm, i.e.

$$|f(y) - f(x)| \le L ||x - y||_2$$
, for all $x, y \in \mathbb{R}^n$

then if g_i , i = 1, ..., n are *i.i.d.* Gaussian variables with $g_i \sim \mathcal{N}(0, 1)$, we have

$$\operatorname{Prob}\left[|M - f(g)| \ge Lt\right] \le \exp(-t^2/2)$$

where $M = \mathbf{E}[f(g)]$ or its median.

A. d'Aspremont. M1 ENS.

Concentration inequalities

Similar concentration results also exist for binary random variables.

Theorem

Bernstein inequality. Let $u_i \in \{-1, 1\}$ be *i.i.d.* random variables with $\mathbf{E}[u_i] = 0$, for any $a \in \mathbb{R}^n$ we have

 $\operatorname{Prob}\left[|a^T u| \ge t ||a||_2\right] \le \exp(-t^2/4)$

We can show the following result extending the S-lemma to approximate the case with multiple quadratic constraints. (Inhomogeneous extensions are possible).

Theorem

Approximate *S***-lemma.** *Call OPT the optimal value of the following quadratic optimization problems*

maximize
$$x^T A x$$

subject to $x^T A_i x \leq c_i, \quad i = 1, \dots, m$

in the variable $x \in \mathbb{R}^n$, where the matrix $A \in \mathbf{S}_n$ is arbitrary, $c_i > 0$, and $A_i \succeq 0$. Call SDP the optimal value of the semidefinite program (we assume strong duality holds and $SDP < \infty$)

maximize
$$\operatorname{Tr}(AX)$$

subject to $\operatorname{Tr}(A_iX)$, $i = 1, \dots, m$

in the variable $X \in \mathbf{S}_n$. Then $OPT \leq SDP \leq 2 \ln \left(2 \sum_{i=1}^m \operatorname{Rank}(A_i) \right) OPT$.

Proof. We write X an optimal solution to SDP and $X^{1/2}AX^{1/2} = UDU^T$, the eigenvalue decomposition of $X^{1/2}AX^{1/2}$, with D diagonal and U orthogonal. We have, by construction

$$\mathbf{Tr}(D) = \mathbf{Tr}(UDU^T) = \mathbf{Tr}(X^{1/2}AX^{1/2}) = \mathbf{Tr}(AX) = SDP$$

We let $\xi_i \in \{-1, 1\}$ be i.i.d. random variables with $\mathbf{E}[\xi] = 0$. We define $\eta = X^{1/2}U\xi$, and write $D_i = U^T X^{1/2} A_i X^{1/2} U$, such that

$$\mathbf{Tr}(D_i) = \mathbf{Tr}(U^T X^{1/2} A_i X^{1/2} U) = \mathbf{Tr}(X^{1/2} A_i X^{1/2}) = \mathbf{Tr}(A_i X) \le c_i$$

this means

$$\eta^{T} A \eta = \xi^{T} U^{T} X^{1/2} A X^{1/2} U \xi$$
$$= \xi^{T} U^{T} U D U^{T} U \xi$$
$$= \xi^{T} D \xi = \mathbf{Tr}(D) = SDP,$$

and similarly,

$$\begin{aligned} \mathbf{E}[\eta^T A_i \eta] &= \mathbf{E}[\xi^T U^T X^{1/2} A_i X^{1/2} U \xi] \\ &= \mathbf{Tr}(U^T X^{1/2} A_i X^{1/2} U) = \mathbf{Tr}(A_i X) \le c_i \end{aligned}$$

A. d'Aspremont. M1 ENS.

This shows that the vector η solves the SDP "on average". We now show how to construct vectors that satisfy approximately solve the QP with high probability. We can write

$$D_i = \sum_{j=1}^k d_j d_j^T, \quad k = \operatorname{Rank}(D_i) = \operatorname{Rank}(A_i),$$

Using the previous concentration inequality

$$\mathbf{Prob}[\|d_j^T\xi\| \ge \sqrt{t}\|d_j\|_2] \le 2\exp(-t/2),$$

now, for each given ξ , if $\xi^T D_i \xi \ge t \sum_{j=1}^k ||d_j||_2^2$ then for at least for one j, we have $|d_j^T \xi| \ge \sqrt{t} ||d_j||_2$, hence

$$\mathbf{Prob}[\xi^T D_i \xi \ge t \sum_{j=1}^k \|d_j\|_2^2] \le \sum_{i=1}^k \mathbf{Prob}[\|d_j^T \xi\| \ge \sqrt{t} \|d_j\|_2]$$
$$\le 2\mathbf{Rank}(D_i) \exp(-t/2)$$

Now, we have $\sum_{j=1}^k \|d_j\|_2^2 = \operatorname{Tr}(\sum_{j=1}^k d_j d_j^T) = \operatorname{Tr}(D_i) \leq c_i$. Hence we have showed

$$\operatorname{Prob}[\eta^T A_i \eta \ge tc_i] \le 2 \operatorname{Rank}(A_i) \exp(-t/2)$$

A. d'Aspremont. M1 ENS.

Let $\delta>0$ and

$$\Theta = 2 \ln \left(\frac{\sum_{i=1}^{m} \mathbf{Rank}(A_i)}{1 - \delta} \right),$$

using union bounds, with probability $\delta>0$

$$\Theta^{-1/2}\eta$$

will be a feasible point of the QP, reaching an objective value of $\Theta^{-1}SDP$, hence

$$OPT \leq SDP \leq 2 \ln \left(2 \sum_{i=1}^{m} \operatorname{Rank}(A_i) \right) OPT$$