Optimisation Combinatoire et Convexe.

Statistical Applications

Linear discrimination

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane:

$$
a^{T} x_{i}+b>0, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b<0, \quad i=1, \ldots, M
$$

homogeneous in a, b, hence equivalent to

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

a set of linear inequalities in a, b

Robust linear discrimination

(Euclidean) distance between hyperplanes

$$
\begin{aligned}
& \mathcal{H}_{1}=\left\{z \mid a^{T} z+b=1\right\} \\
& \mathcal{H}_{2}=\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

is $\operatorname{dist}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)=2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|a\|_{2} \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \tag{1}\\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

(after squaring objective) a QP in a, b

Lagrange dual of maximum margin separation problem

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu \\
\text { subject to } & 2\left\|\sum_{i=1}^{N} \lambda_{i} x_{i}-\sum_{i=1}^{M} \mu_{i} y_{i}\right\|_{2} \leq 1 \tag{2}\\
& \mathbf{1}^{T} \lambda=\mathbf{1}^{T} \mu, \quad \lambda \succeq 0, \quad \mu \succeq 0
\end{array}
$$

from duality, optimal value is inverse of maximum margin of separation

interpretation

- change variables to $\theta_{i}=\lambda_{i} / \mathbf{1}^{T} \lambda, \gamma_{i}=\mu_{i} / \mathbf{1}^{T} \mu, t=1 /\left(\mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu\right)$

■ invert objective to minimize $1 /\left(\mathbf{1}^{T} \lambda+\mathbf{1}^{T} \mu\right)=t$

$$
\begin{array}{ll}
\text { minimize } & t \\
\text { subject to } & \left\|\sum_{i=1}^{N} \theta_{i} x_{i}-\sum_{i=1}^{M} \gamma_{i} y_{i}\right\|_{2} \leq t \\
& \theta \succeq 0, \quad \mathbf{1}^{T} \theta=1, \quad \gamma \succeq 0, \quad \mathbf{1}^{T} \gamma=1
\end{array}
$$

optimal value is distance between convex hulls

Approximate linear separation of non-separable sets

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u+\mathbf{1}^{T} v \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \succeq 0, \quad v \succeq 0
\end{array}
$$

- an LP in a, b, u, v
- at optimum, $u_{i}=\max \left\{0,1-a^{T} x_{i}-b\right\}, v_{i}=\max \left\{0,1+a^{T} y_{i}+b\right\}$
- can be interpreted as a heuristic for minimizing \#misclassified points

Support vector classifier

$$
\begin{array}{ll}
\operatorname{minimize} & \|a\|_{2}+\gamma\left(\mathbf{1}^{T} u+\mathbf{1}^{T} v\right) \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \succeq 0, \quad v \succeq 0
\end{array}
$$

produces point on trade-off curve between inverse of margin $2 /\|a\|_{2}$ and classification error, measured by total slack $\mathbf{1}^{T} u+\mathbf{1}^{T} v$
same example as previous page, with $\gamma=0.1$:

Support Vector Machines: Duality

Given m data points $x_{i} \in \mathbb{R}^{n}$ with labels $y_{i} \in\{-1,1\}$.

- The maximum margin classification problem can be written

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|w\|_{2}^{2}+C \mathbf{1}^{T} z \\
\text { subject to } & y_{i}\left(w^{T} x_{i}\right) \geq 1-z_{i}, \quad i=1, \ldots, m \\
& z \geq 0
\end{array}
$$

in the variables $w, z \in \mathbb{R}^{n}$, with parameter $C>0$.

- We can set $w=(w, \mathbf{1})$ and increase the problem dimension by 1 . So we can assume w.l.o.g. $b=0$ in the classifier $w^{T} x_{i}+b$.
- The Lagrangian is written

$$
L(w, z, \alpha)=\frac{1}{2}\|w\|_{2}^{2}+C \mathbf{1}^{T} z+\sum_{i=1}^{m} \alpha_{i}\left(1-z_{i}-y_{i} w^{T} x_{i}\right)
$$

with dual variable $\alpha \in \mathbb{R}_{+}^{m}$.

Support Vector Machines: Duality

- The Lagrangian can be rewritten

$$
L(w, z, \alpha)=\frac{1}{2}\left(\left\|w-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}\right\|_{2}^{2}-\left\|\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}\right\|_{2}^{2}\right)+(C \mathbf{1}-\alpha)^{T} z+\mathbf{1}^{T} \alpha
$$

with dual variable $\alpha \in \mathbb{R}_{+}^{n}$.

- Minimizing in (w, z) we form the dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -\frac{1}{2}\left\|\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}\right\|_{2}^{2}+\mathbf{1}^{T} \alpha \\
\text { subject to } & 0 \leq \alpha \leq C
\end{array}
$$

- At the optimum, we must have

$$
w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \quad \text { and } \quad \alpha_{i}=C \text { if } z_{i}>0
$$

(this is the representer theorem).

Support Vector Machines: the kernel trick

- If we write X the data matrix with columns x_{i}, the dual can be rewritten

$$
\begin{array}{ll}
\text { maximize } & -\frac{1}{2} \alpha^{T} \operatorname{diag}(y) X^{T} X \operatorname{diag}(y) \alpha+\mathbf{1}^{T} \alpha \\
\text { subject to } & 0 \leq \alpha \leq C
\end{array}
$$

- This means that the data only appears in the dual through the gram matrix

$$
K=X^{T} X
$$

which is called the kernel matrix.

- In particular, the original dimension n does not appear in the dual. SVM complexity only grows with the number of samples.
- In particular, the x_{i} are allowed to be infinite dimensional.
- The only requirement on K is that $K \succeq 0$.

Parametric distribution estimation

- distribution estimation problem: estimate probability density $p(y)$ of a random variable from observed values
- parametric distribution estimation: choose from a family of densities $p_{x}(y)$, indexed by a parameter x

maximum likelihood estimation

$$
\text { maximize (over } x) \quad \log p_{x}(y)
$$

- y is observed value
- $l(x)=\log p_{x}(y)$ is called log-likelihood function
- can add constraints $x \in C$ explicitly, or define $p_{x}(y)=0$ for $x \notin C$
- a convex optimization problem if $\log p_{x}(y)$ is concave in x for fixed y

Linear measurements with IID noise

linear measurement model

$$
y_{i}=a_{i}^{T} x+v_{i}, \quad i=1, \ldots, m
$$

- $x \in \mathbb{R}^{n}$ is vector of unknown parameters
- v_{i} is IID measurement noise, with density $p(z)$
- y_{i} is measurement: $y \in \mathbb{R}^{m}$ has density $p_{x}(y)=\prod_{i=1}^{m} p\left(y_{i}-a_{i}^{T} x\right)$
maximum likelihood estimate: any solution x of

$$
\operatorname{maximize} \quad l(x)=\sum_{i=1}^{m} \log p\left(y_{i}-a_{i}^{T} x\right)
$$

(y is observed value)

examples

- Gaussian noise $\mathcal{N}\left(0, \sigma^{2}\right): p(z)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-z^{2} /\left(2 \sigma^{2}\right)}$,

$$
l(x)=-\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(a_{i}^{T} x-y_{i}\right)^{2}
$$

ML estimate is LS solution

- Laplacian noise: $p(z)=(1 /(2 a)) e^{-|z| / a}$,

$$
l(x)=-m \log (2 a)-\frac{1}{a} \sum_{i=1}^{m}\left|a_{i}^{T} x-y_{i}\right|
$$

ML estimate is ℓ_{1}-norm solution

- uniform noise on $[-a, a]$:

$$
l(x)= \begin{cases}-m \log (2 a) & \left|a_{i}^{T} x-y_{i}\right| \leq a, \quad i=1, \ldots, m \\ -\infty & \text { otherwise }\end{cases}
$$

ML estimate is any x with $\left|a_{i}^{T} x-y_{i}\right| \leq a$

Logistic regression

random variable $y \in\{0,1\}$ with distribution

$$
p=\operatorname{Prob}(y=1)=\frac{\exp \left(a^{T} u+b\right)}{1+\exp \left(a^{T} u+b\right)}
$$

- a, b are parameters; $u \in \mathbb{R}^{n}$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_{i}, y_{i})
log-likelihood function (for $y_{1}=\cdots=y_{k}=1, y_{k+1}=\cdots=y_{m}=0$):

$$
\begin{aligned}
l(a, b) & =\log \left(\prod_{i=1}^{k} \frac{\exp \left(a^{T} u_{i}+b\right)}{1+\exp \left(a^{T} u_{i}+b\right)} \prod_{i=k+1}^{m} \frac{1}{1+\exp \left(a^{T} u_{i}+b\right)}\right) \\
& =\sum_{i=1}^{k}\left(a^{T} u_{i}+b\right)-\sum_{i=1}^{m} \log \left(1+\exp \left(a^{T} u_{i}+b\right)\right)
\end{aligned}
$$

concave in a, b
example ($n=1, m=50$ measurements)

- circles show 50 points $\left(u_{i}, y_{i}\right)$
- solid curve is ML estimate of $p=\exp (a u+b) /(1+\exp (a u+b))$

Experiment design

m linear measurements $y_{i}=a_{i}^{T} x+w_{i}, i=1, \ldots, m$ of unknown $x \in \mathbb{R}^{n}$

- measurement errors w_{i} are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$
\hat{x}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1} \sum_{i=1}^{m} y_{i} a_{i}
$$

- error $e=\hat{x}-x$ has zero mean and covariance

$$
E=\mathbf{E} e e^{T}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1}
$$

confidence ellipsoids are given by $\left\{x \mid(x-\hat{x})^{T} E^{-1}(x-\hat{x}) \leq \beta\right\}$
experiment design: choose $a_{i} \in\left\{v_{1}, \ldots, v_{p}\right\}$ (a set of possible test vectors) to make E 'small'
vector optimization formulation

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{S}_{+}^{n}\right) & E=\left(\sum_{k=1}^{p} m_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & m_{k} \geq 0, \quad m_{1}+\cdots+m_{p}=m \\
& m_{k} \in \mathbf{Z}
\end{array}
$$

- variables are m_{k} (\# vectors a_{i} equal to v_{k})
- difficult in general, due to integer constraint

relaxed experiment design

assume $m \gg p$, use $\lambda_{k}=m_{k} / m$ as (continuous) real variable

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{S}_{+}^{n}\right) & E=(1 / m)\left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & \lambda \succeq 0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

- common scalarizations: minimize $\log \operatorname{det} E, \operatorname{Tr} E, \lambda_{\max }(E), \ldots$
- can add other convex constraints, e.g., bound experiment cost $c^{T} \lambda \leq B$

Experiment design

D-optimal design

$$
\begin{array}{ll}
\operatorname{minimize} & \log \operatorname{det}\left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & \lambda \succeq 0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

interpretation: minimizes volume of confidence ellipsoids

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & \log \operatorname{det} W+n \log n \\
\text { subject to } & v_{k}^{T} W v_{k} \leq 1, \quad k=1, \ldots, p
\end{array}
$$

interpretation: $\left\{x \mid x^{T} W x \leq 1\right\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors v_{k}
complementary slackness: for λ, W primal and dual optimal

$$
\lambda_{k}\left(1-v_{k}^{T} W v_{k}\right)=0, \quad k=1, \ldots, p
$$

optimal experiment uses vectors v_{k} on boundary of ellipsoid defined by W

Experiment design

example $(p=20)$

design uses two vectors, on boundary of ellipse defined by optimal W

Experiment design

Derivation of dual.

first reformulate primal problem with new variable X

$$
\begin{aligned}
& \text { minimize } \quad \log \operatorname{det} X^{-1} \\
& \text { subject to } \quad X=\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}, \quad \lambda \succeq 0, \quad \mathbf{1}^{T} \lambda=1 \\
& L(X, \lambda, Z, z, \nu)=\log \operatorname{det} X^{-1}+\operatorname{Tr}\left(Z\left(X-\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)\right)-z^{T} \lambda+\nu\left(\mathbf{1}^{T} \lambda-1\right)
\end{aligned}
$$

- minimize over X by setting gradient to zero: $-X^{-1}+Z=0$
- minimum over λ_{k} is $-\infty$ unless $-v_{k}^{T} Z v_{k}-z_{k}+\nu=0$

Dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & n+\log \operatorname{det} Z-\nu \\
\text { subject to } & v_{k}^{T} Z v_{k} \leq \nu, \quad k=1, \ldots, p
\end{array}
$$

change variable $W=Z / \nu$, and optimize over ν to get dual of page 17 .

