Tractable performance bounds for compressed sensing.

Alex d'Aspremont, Francis Bach, Laurent El Ghaoui
Princeton University, École Normale Supérieure/INRIA, U.C. Berkeley.

Support from NSF, DHS and Google.

Introduction

Consider the following underdetermined linear system

where $A \in \mathbf{R}^{m \times n}$, with $n \geq m$.

Can we find the sparsest solution?

Introduction

- Signal processing: We make a few measurements of a high dimensional signal, which admits a sparse representation in a well chosen basis (e.g. Fourier, wavelet). Can we reconstruct the signal exactly?
(Donoho, 2004; Donoho and Tanner, 2005; Donoho, 2006)
- Coding: Suppose we transmit a message which is corrupted by a few errors. How many errors does it take to start losing the signal?
(Candès and Tao, 2005, 2006)
- Statistics: Variable selection \& regression (LASSO, . . .).
(Zhao and Yu, 2006; Meinshausen and Yu, 2008; Meinshausen et al., 2007; Candès and Tao, 2007; Bickel et al., 2007)

Introduction

Many variants. .

- The observations could be noisy.
- Approximate solutions might be sufficient.
- We might have strict computational limits on the decoding side.

In this talk: use simplest formulation possible, focus on the complexity of recovery conditions.

Introduction

Why sparsity?

- Sparsity is a proxy for power laws. Most results stated here on sparse vectors apply to vectors with a power law decay in coefficient magnitude.
- Power laws appear everywhere. . .
- Text: word frequencies in natural language follow a Zipf power law.
- Ranking: pagerank coefficients follow a power law.
- Signal processing: $1 / f$ signals
- Social networks: node degrees follow a power law.
- Earthquakes: Gutenberg-Richter power laws
- River systems, cities, net worth, etc.

Introduction

Frequency vs. word in Wikipedia (from Wikipedia).

Introduction

Frequency vs. magnitude for earthquakes worldwide. (Christensen et al., 2002)

Introduction

Left: Original image.
Right: Same image reconstructed from 9\% largest wavelet coefficients.

Introduction

- Getting the sparsest solution means solving

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & A x=b
\end{array}
$$

- Given an a priori bound on the solution, this can be formulated as a Mixed Integer Linear Program:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & A x=b \\
& |x| \preceq B u \\
& u \in\{0,1\}^{n} .
\end{array}
$$

which is a (hard) combinatorial problem in $x, u \in \mathbf{R}^{n} \ldots$

l_{1} relaxation

Assuming $|x| \leq 1$, we can replace:

$$
\operatorname{Card}(x)=\sum_{i=1}^{n} 1_{\left\{x_{i} \neq 0\right\}}
$$

with

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

Graphically, assuming $x \in[-1,1]$ this is:

The l_{1} norm is the largest convex lower bound on $\operatorname{Card}(x)$ in $[-1,1]$.

minimize	$\operatorname{Card}(x)$				
subject to	$A x=b$	\quad becomes \quad	minimize $\\|x\\|_{1}$		
:---					
subject to $A x=b$					

- Relax the constraint $u \in\{0,1\}^{n}$ as $u \in[0,1]^{n}$ in the MILP formulation.
- Same result if we relax a nonconvex quadratic program with $u \in\{0,1\}$ replaced by $u(1-u)=0$ (see Lemaréchal and Oustry (1999) for a general discussion).
- Same trick can be generalized: minimum rank semidefinite program by Fazel et al. (2001).

Introduction

Example: fix A, draw many random sparse signals e and plot the probability of perfectly recovering e when solving

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=A e
\end{array}
$$

in $x \in \mathbf{R}^{n}$ over 100 samples, with $n=50$ and $m=30$.

Introduction

- Donoho and Tanner (2005), Candès and Tao (2005):

For certain matrices A, when the solution e is sparse enough, the solution of the ℓ_{1}-minimization problem is also the sparsest solution to $A x=A e$.

- This happens even when $\operatorname{Card}(\mathbf{e})=\mathbf{O}(\mathbf{m})$ asymptotically in n when $m=\rho n$, which is provably optimal.

Introduction

Similar results exist for rank minimization.

- The ℓ_{1} norm is replaced by the trace norm on matrices.
- Exact recovery results are detailed in Recht et al. (2007), Candes and Recht (2008), . .

Introduction

Explicit conditions on the matrix A for perfect recovery of all sparse signals e.

- Nullspace Property (NSP) from Donoho and Huo (2001), Cohen et al. (2009), . .
- Restricted Isometry Property (RIP) from Candès and Tao (2005).

Candès and Tao (2005) and Baraniuk et al. (2007) show that these conditions are satisfied by certain classes of random matrices: Gaussian, Bernoulli, etc.
(Donoho and Tanner (2005) use a geometric argument to obtain similar results)

One small problem. . .

Testing these conditions on general matrices is harder than finding the sparsest solution to an underdetermined linear system for example.

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Testing the RIP

- Given $0<k \leq n$, Candès and Tao (2005) define the restricted isometry constant $\delta_{k}(A)$ as smallest number δ such that

$$
(1-\delta)\|z\|_{2}^{2} \leq\left\|A_{I} z\right\|_{2}^{2} \leq(1+\delta)\|z\|_{2}^{2},
$$

for all $z \in \mathbf{R}^{|I|}$ and any index subset $I \subset[1, n]$ of cardinality at most k, where A_{I} is the submatrix formed by extracting the columns of A indexed by I.

- The constant $\delta_{k}(A)$ measures how far sparse subsets of the columns of A are from being an isometry.
- Candès and Tao (2005): $\delta_{k}(A)$ controls sparse recovery using ℓ_{1}-minimization.

Testing the RIP

Following Candès and Tao (2005), suppose the solution has cardinality k.

- If $\delta_{2 k}(A)<1$, we can recover the error e by solving:

$$
\begin{array}{ll}
\text { minimize } & \operatorname{Card}(x) \\
\text { subject to } & A x=A e
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, which is a combinatorial problem.

- If $\delta_{2 k}(A)<\sqrt{2}-1$, we can recover the error e by solving:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=A e
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, which is a linear program.

Testing the RIP

The constant $\delta_{2 k}(A)<1$ also controls reconstruction error when exact recovery does not occur, with

$$
\left\|x^{*}-e\right\|_{1} \leq 2 \frac{1+(\sqrt{2}-1) \delta_{2 k}(A)}{1-\delta_{2 k}(A) /(\sqrt{2}-1)} \sigma_{k}(e)
$$

where x^{*} is the solution to the ℓ_{1} minimization problem and e is the original signal, with

$$
\sigma_{k}(x)=\min _{\operatorname{Card}(u) \leq k}\|u-e\|_{1}
$$

denoting the best possible approximation error.

See Cohen et al. (2009) or Candes (2008) for simple proofs.

Testing the RIP

- The restricted isometry constant $\delta_{k}(A)$ can be computed by solving the following sparse eigenvalue problem

$$
\begin{aligned}
\left(1+\delta_{k}^{\max }\right)= & \max .
\end{aligned} x^{T}\left(A A^{T}\right) x, ~\left(\begin{array}{ll}
\text { s. t. } & \operatorname{Card}(x) \leq k \\
& \|x\|=1
\end{array}\right.
$$

in $x \in \mathbf{R}^{m}$ (a similar problem gives $\delta_{k}^{\min }$ and $\delta_{k}(A)=\max \left\{\delta_{k}^{\min }, \delta_{k}^{\max }\right\}$).

- SDP relaxation in d'Aspremont et al. (2007):

$$
\begin{array}{llll}
\text { maximize } & x^{T} A A^{T} x \\
\text { subject to } & \|x\|_{2}=1 & \text { is bounded by } & \begin{array}{c}
\text { maximize }
\end{array} \\
& \operatorname{Tr}\left(A A^{T} X\right) \\
& \operatorname{Card}(x) \leq k, & & \operatorname{Tr}(X)=1 \\
& & \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& & X \succeq 0,
\end{array}
$$

Semidefinite relaxation

(Lovász and Schrijver, 1991; Goemans and Williamson, 1995) Start from

$$
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \\
& \mathbf{C a r d}(x) \leq k
\end{array}
$$

where $x \in \mathbf{R}^{n}$. Let $X=x x^{T}$ and write everything in terms of the matrix X

$$
\begin{aligned}
\operatorname{maximize} & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T},
\end{aligned}
$$

Replace $X=x x^{T}$ by the equivalent $X \succeq 0, \operatorname{Rank}(X)=1$

$$
\begin{array}{ll}
\underset{\operatorname{maximize}}{\operatorname{ma}(A X)} \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X \succeq 0, \operatorname{Rank}(X)=1,
\end{array}
$$

again, this is the same problem.

Semidefinite relaxation

We have made some progress:

- The objective $\operatorname{Tr}(A X)$ is now linear in X
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

But this is still a hard problem:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex.
- So is the constraint $\operatorname{Rank}(X)=1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbf{R}^{p}, \operatorname{Card}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. So we can replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex): $\mathbf{1}^{T}|X| \mathbf{1} \leq k$.
- We simply drop the rank constraint

Semidefinite Programming

Semidefinite relaxation:

$$
\begin{array}{ll}
\max . & x^{T} A x \\
\text { s.t. } & \|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

$$
\begin{array}{ll}
\max . & \operatorname{Tr}(A X) \\
\text { s.t. } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

This is a (convex) semidefinite program in the variable $X \in \mathbf{S}^{n}$ and can be solved efficiently (roughly $O\left(n^{4}\right)$ in this case).

Testing the RIP

Upper bound on δ_{k} using semidefinite relaxation, for a Bernoulli matrix of dimension $n=1000, p=750$ (blue cicles).
Lower bound on δ_{S} using approximate sparse eigenvectors (black squares).

Testing the RIP

Lower bound on $\lambda_{k}^{\min }\left(A A^{T}\right)$ using the semidefinite relaxation, for a Bernoulli matrix of dimension $n=100, p=75$ (blue circles).
Upper bound using approximate sparse eigenvectors (black squares).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Testing the NSP

Given $A \in \mathbf{R}^{m \times n}$ and $k>0$, Donoho and Huo (2001) or Cohen et al. (2009) among others, define the Nullspace Property of the matrix A as

$$
\left\|x_{T}\right\|_{1} \leq \alpha_{k}\|x\|_{1}
$$

for all vectors $x \in \mathbf{R}^{n}$ with $A x=0$ and index subsets $T \subset[1, n]$ with cardinality k, for some $\alpha_{k} \in[0,1)$.

Once again, two thresholds:

- $\alpha_{2 k}<1$ means recovery is guaranteed by solving a ℓ_{0} minimization problem.
- $\alpha_{k}<1 / 2$ means recovery is guaranteed by solving a ℓ_{1} minimization problem.

Cohen et al. (2009) show that $R I P(2 k, \delta)$ implies NSP with $\alpha=(1+5 \delta) /(2+2 \delta)$, so the NSP is a weaker condition for sparse recovery.

Testing the NSP

- By homogeneity, we have

$$
\alpha_{k}=\max _{\left\{A x=0,\|x\|_{1}=1\right\}} \max _{\left\{\|y\|_{\infty}=1,\|y\|_{1} \leq k\right\}} y^{T} x
$$

- An upper bound can be computed by solving

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(Z) \\
\text { subject to } & A X A^{T}=0,\|X\|_{1} \leq 1, \\
& \|Y\|_{\infty} \leq 1,\|Y\|_{1} \leq k^{2},\|Z\|_{1} \leq k, \\
& \left(\begin{array}{cc}
X & Z^{T} \\
Z & Y
\end{array}\right) \succeq 0,
\end{array}
$$

which is a semidefinite program in $X, Y \in \mathbf{S}_{n}, Z \in \mathbf{R}^{n \times n}$.

- This is a standard semidefinite relaxation, except for the redundant constraint $\|Z\|_{1} \leq k$ which significantly improves performance. Extra column-wise redundant constraints further tighten it.
- Another LP-based relaxation was derived in Juditsky and Nemirovski (2008).

Testing the NSP

- Use an elimination result for LMIs in (Boyd et al., 1994, §2.6.2) to reduce the size of the problem and express it in terms of a matrix P where $A P=0$ with $P^{T} P=\mathbf{I}$.
- Compute the dual and using binary search to certify $\alpha_{k} \leq 1 / 2$, we solve

$$
\begin{array}{ll}
\text { maximize } & \lambda_{\min }\left(\begin{array}{cc}
P^{T} U_{1} P & -\frac{1}{2} P^{T}\left(\mathbf{I}+U_{4}\right) \\
-\frac{1}{2}\left(\mathbf{I}+U_{4}^{T}\right) P & U_{2}+U_{3}
\end{array}\right) \\
\text { subject to } & \left\|U_{1}\right\|_{\infty}+k^{2}\left\|U_{2}\right\|_{\infty}+\left\|U_{3}\right\|_{1}+k\left\|U_{4}\right\|_{\infty} \leq 1 / 2
\end{array}
$$

in the variables $U_{1}, U_{2}, U_{3} \in \mathbf{S}_{n}$ and $U_{4} \in \mathbf{R}^{n \times n}$.

- Shows that the relaxation is rotation invariant.

Testing the NSP

- The complexity of computing the Euclidean projection $\left(x_{0}, y_{0}, z_{0}, w_{0}\right) \in \mathbf{R}^{3 n}$ on

$$
\|x\|_{\infty}+k^{2}\|y\|_{\infty}+\|z\|_{1}+k\|w\|_{\infty} \leq \alpha
$$

is bounded by $O\left(n \log n \log _{2}(1 / \epsilon)\right)$, where ϵ is the target precision in projecting.

- Using smooth optimization techniques as in Nesterov (2007), we get the following complexity bound:

$$
O\left(\frac{n^{4} \sqrt{\log n}}{\epsilon}\right)
$$

- In practice, this is still slow. Much slower than the LP relaxation in Juditsky and Nemirovski (2008). Slower also than a similar algorithm in d'Aspremont et al. (2007) to bound the RI constant.

Testing the NSP

- We can use randomization to generate certificates that $\alpha_{k}>1 / 2$ and show that sparse recovery fails.
- Concentration result: let $X \in \mathbf{S}_{n}, x \sim \mathcal{N}(0, X)$ and $\delta>0$, we have

$$
\mathbf{P}\left(\frac{\|x\|_{1}}{(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}} \geq 1\right) \leq \frac{1}{\delta}
$$

- Highlights the importance of the redundant constraint on Z :

$$
\|Z\|_{1} \leq\left(\sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}\right)\left(\sum_{i=1}^{n}\left(Y_{i i}\right)^{1 / 2}\right)
$$

with equality when the SDP solution has rank one.

Testing the NSP

- Tightness: writing $S D P_{k}$ the optimal value of the relaxation, we have

$$
\frac{S D P_{k}-\epsilon}{g(X, \delta) h(Y, n, k, \delta)} \leq \alpha_{k} \leq S D P_{k}
$$

where

$$
g(X, \delta)=(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2}
$$

and

$$
\begin{aligned}
h(Y, n, k, \delta)= & \max \left\{(\sqrt{2 \log 2 n}+\sqrt{2 \log \delta}) \max _{i=1, \ldots, n}\left(Y_{i i}\right)^{1 / 2}\right. \\
& \left.\frac{(\sqrt{2 / \pi}+\sqrt{2 \log \delta}) \sum_{i=1}^{n}\left(Y_{i i}\right)^{1 / 2}}{k}\right\}
\end{aligned}
$$

- Because $\sum_{i=1}^{n}\left(X_{i i}\right)^{1 / 2} \leq \sqrt{n}$ here, this is roughly

$$
\frac{S D P_{k}-\epsilon}{\max \left\{\sqrt{2 \log 2 n}, \sqrt{\frac{m}{k}} \sqrt{\frac{n}{m}} \sqrt{\frac{1}{k}}\right\} C \sqrt{n}} \leq \alpha_{k} \leq S D P_{k}
$$

Testing the NSP

Relaxation	ρ	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	Strong k	Weak k
LP	0.5	$\mathbf{0 . 2 7}$	$\mathbf{0 . 4 9}$	0.67	0.83	0.97	2	11
SDP	0.5	$\mathbf{0 . 2 7}$	$\mathbf{0 . 4 9}$	0.65	0.81	0.94	2	11
SDP low.	0.5	0.27	0.31	0.33	0.32	0.35	2	11
LP	0.6	$\mathbf{0 . 2 2}$	$\mathbf{0 . 4 1}$	0.57	0.72	0.84	2	12
SDP	0.6	$\mathbf{0 . 2 2}$	$\mathbf{0 . 4 1}$	0.56	0.70	0.82	2	12
SDP low.	0.6	0.22	0.29	0.31	0.32	0.36	2	12
LP	0.7	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 4 7}$	0.60	0.71	3	14
SDP	0.7	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 4 6}$	0.59	0.70	3	14
SDP low.	0.7	0.20	0.27	0.31	0.35	0.38	3	14
LP	0.8	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 4 8}$	0.58	3	16
SDP	0.8	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 3 7}$	$\mathbf{0 . 4 8}$	0.58	3	16
SDP low.	0.8	0.15	0.23	0.28	0.33	0.38	3	16

Given ten sample Gaussian matrices of leading dimension $n=40$, we list median upper bounds on the values of α_{k} for various cardinalities k and matrix shape ratios ρ. We also list the asymptotic upper bound on both strong and weak recovery computed in Donoho and Tanner (2008) and the lower bound on α_{k} obtained by randomization using the SDP solution (SDP low.).

Outline

- Introduction
- Testing the RIP
- Testing the NSP
- Limits of performance

Limits of performance

- The SDP relaxation is tight for α_{1}.
- Following Juditsky and Nemirovski (2008), this also means that it can prove perfect recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at the optimal rate $k=O\left(k^{*}\right)$.
- It cannot do better than $k=O\left(\sqrt{k^{*}}\right)$. (Counter-example by A. Nemirovski: for any matrix A, feasible point of the SDP where $k=\sqrt{k^{*}}$ with objective greater than $1 / 2$ in testing the NSP).
- The LP relaxation in Juditsky and Nemirovski (2008) guarantees the same $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at $k=O\left(k^{*}\right)$. It also cannot do better than this rate.
- The same kind of argument shows that the DSCPA relaxation in d'Aspremont et al. (2007) cannot do better than $k=O\left(\sqrt{k^{*}}\right)$.

This means that all current convex relaxations for testing sparse recovery conditions achieve a maximum rate of $\mathrm{O}(\sqrt{\mathrm{m}})$...

Conclusion

- Good news: Tractable convex relaxations of sparse recovery conditions prove recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ for any matrix satisfying NSP at the optimal rate $k=O\left(k^{*}\right)$.
- Bad news: Testing recovery conditions on deterministic matrices at the optimal rate $O(m)$ remains an open problem.

What next?

- Improved relaxations.
- Test weak recovery instead.
- Prove hardness of testing NSP and RIP beyond $O(\sqrt{m})$: optimization would do worst than sampling a few Gaussian variables?

References

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A Simple Proof of the Restricted Isometry Property for Random Matrices. To appear, 2007.
P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso and dantzig selector. Preprint Submitted to the Annals of Statistics, 2007.

Stephen Boyd, Laurent El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, 1994.
E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. To appear in Annals of Statistics, 2007.
E. J. Candès and T. Tao. Decoding by linear programming. Information Theory, IEEE Transactions on, 51(12):4203-4215, 2005.
E.J. Candes. The Restricted Isometry Property and Its Implications for Compressed Sensing. CRAS, 2008.
E.J. Candes and B. Recht. Exact matrix completion via convex optimization. preprint, 2008.
E.J. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406-5425, 2006.
K. Christensen, L. Danon, T. Scanlon, and P. Bak. Unified scaling law for earthquakes, 2002.
A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. Journal of the AMS, 22(1):211-231, 2009.
A. d'Aspremont, L. El Ghaoui, M.I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-448, 2007.
D. L. Donoho. Neighborly polytopes and sparse solution of underdetermined linear equations. Stanford dept. of statistics working paper, 2004.
D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. of the National Academy of Sciences, 102(27):9446-9451, 2005.
D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289-1306, 2006.
D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7): 2845-2862, 2001.
D.L. Donoho and J. Tanner. Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications. Arxiv preprint arXiv:0807.3590, 2008.
M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. Proceedings American Control Conference, 6:4734-4739, 2001.
M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42:1115-1145, 1995.
A. Juditsky and A.S. Nemirovski. On verifiable sufficient conditions for sparse signal recovery via ℓ_{1} minimization. ArXiv:0809.2650, 2008.
C. Lemaréchal and F. Oustry. Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. INRIA, Rapport de recherche, 3710, 1999.
L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166-190, 1991.
N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37(1):246-270, 2008.
N. Meinshausen, G. Rocha, and B. Yu. A tale of three cousins: Lasso, I2boosting, and danzig. Annals of Statistics, 35(6):2373-2384, 2007.
Y. Nesterov. Smoothing technique and its applications in semidefinite optimization. Mathematical Programming, 110(2):245-259, 2007.
B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Arxiv preprint arXiv:0706.4138, 2007.
P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning Research, 7:2541-2563, 2006.

