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Introduction

Consider the following underdetermined linear system

n

m

A x =

=

b

where A ∈ Rm×n, with n ≥ m.

Can we find the sparsest solution?
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Introduction

• Signal processing: We make a few measurements of a high dimensional
signal, which admits a sparse representation in a well chosen basis (e.g.
Fourier, wavelet). Can we reconstruct the signal exactly?
(Donoho, 2004; Donoho and Tanner, 2005; Donoho, 2006)

• Coding: Suppose we transmit a message which is corrupted by a few errors.
How many errors does it take to start losing the signal?
(Candès and Tao, 2005, 2006)

• Statistics: Variable selection & regression (LASSO, . . . ).
(Zhao and Yu, 2006; Meinshausen and Yu, 2008; Meinshausen et al., 2007; Candès and Tao,

2007; Bickel et al., 2007)
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Introduction

Many variants. . .

• The observations could be noisy.

• Approximate solutions might be sufficient.

• We might have strict computational limits on the decoding side.

In this talk: use simplest formulation possible, focus on the complexity of
recovery conditions.

A. d’Aspremont Stats., U.C. Berkeley, November 2009. 4/38



Introduction

Why sparsity?

• Sparsity is a proxy for power laws. Most results stated here on sparse vectors
apply to vectors with a power law decay in coefficient magnitude.

• Power laws appear everywhere. . .

◦ Text: word frequencies in natural language follow a Zipf power law.

◦ Ranking: pagerank coefficients follow a power law.

◦ Signal processing: 1/f signals

◦ Social networks: node degrees follow a power law.

◦ Earthquakes: Gutenberg-Richter power laws

◦ River systems, cities, net worth, etc.
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Introduction

Frequency vs. word in Wikipedia (from Wikipedia).
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Introduction

Frequency vs. magnitude for earthquakes worldwide. (Christensen et al., 2002)
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Introduction
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Left: Original image.

Right: Same image reconstructed from 9% largest wavelet coefficients.
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Introduction

• Getting the sparsest solution means solving

minimize Card(x)
subject to Ax = b

• Given an a priori bound on the solution, this can be formulated as a Mixed
Integer Linear Program:

minimize 1
Tu

subject to Ax = b
|x| � Bu
u ∈ {0, 1}n.

which is a (hard) combinatorial problem in x, u ∈ Rn. . .
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l1 relaxation

Assuming |x| ≤ 1, we can replace:

Card(x) =

n
∑

i=1

1{xi 6=0}

with

‖x‖1 =
n
∑

i=1

|xi|

Graphically, assuming x ∈ [−1, 1] this is:

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the largest convex lower bound on Card(x) in [−1, 1].
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l1 relaxation

minimize Card(x)
subject to Ax = b

becomes minimize ‖x‖1

subject to Ax = b

• Relax the constraint u ∈ {0, 1}n as u ∈ [0, 1]n in the MILP formulation.

• Same result if we relax a nonconvex quadratic program with u ∈ {0, 1} replaced
by u(1 − u) = 0 (see Lemaréchal and Oustry (1999) for a general discussion).

• Same trick can be generalized: minimum rank semidefinite program by Fazel
et al. (2001).
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Introduction

Example: fix A, draw many random sparse signals e and plot the probability of
perfectly recovering e when solving

minimize ‖x‖1

subject to Ax = Ae

in x ∈ Rn over 100 samples, with n = 50 and m = 30.
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Introduction

• Donoho and Tanner (2005), Candès and Tao (2005):

For certain matrices A, when the solution e is sparse enough, the solution of
the ℓ1-minimization problem is also the sparsest solution to Ax = Ae.

• This happens even when Card(e) = O(m) asymptotically in n when m = ρn,
which is provably optimal.
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Introduction

Similar results exist for rank minimization.

• The ℓ1 norm is replaced by the trace norm on matrices.

• Exact recovery results are detailed in Recht et al. (2007), Candes and Recht
(2008), . . .
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Introduction

Explicit conditions on the matrix A for perfect recovery of all sparse signals e.

• Nullspace Property (NSP) from Donoho and Huo (2001), Cohen et al.
(2009), . . .

• Restricted Isometry Property (RIP) from Candès and Tao (2005).

Candès and Tao (2005) and Baraniuk et al. (2007) show that these conditions are
satisfied by certain classes of random matrices: Gaussian, Bernoulli, etc.
(Donoho and Tanner (2005) use a geometric argument to obtain similar results)

One small problem. . .

Testing these conditions on general matrices is harder than finding the sparsest
solution to an underdetermined linear system for example.
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Outline

• Introduction

• Testing the RIP

• Testing the NSP

• Limits of performance
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Testing the RIP

• Given 0 < k ≤ n, Candès and Tao (2005) define the restricted isometry
constant δk(A) as smallest number δ such that

(1 − δ)‖z‖2
2 ≤ ‖AIz‖2

2 ≤ (1 + δ)‖z‖2
2,

for all z ∈ R|I| and any index subset I ⊂ [1, n] of cardinality at most k, where
AI is the submatrix formed by extracting the columns of A indexed by I.

• The constant δk(A) measures how far sparse subsets of the columns of A are
from being an isometry.

• Candès and Tao (2005): δk(A) controls sparse recovery using
ℓ1-minimization.
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Testing the RIP

Following Candès and Tao (2005), suppose the solution has cardinality k.

• If δ2k(A) < 1, we can recover the error e by solving:

minimize Card(x)
subject to Ax = Ae

in the variable x ∈ Rn, which is a combinatorial problem.

• If δ2k(A) <
√

2 − 1, we can recover the error e by solving:

minimize ‖x‖1

subject to Ax = Ae

in the variable x ∈ Rn, which is a linear program.

A. d’Aspremont Stats., U.C. Berkeley, November 2009. 18/38



Testing the RIP

The constant δ2k(A) < 1 also controls reconstruction error when exact
recovery does not occur, with

‖x∗ − e‖1 ≤ 2
1 + (

√
2 − 1)δ2k(A)

1 − δ2k(A)/(
√

2 − 1)
σk(e)

where x∗ is the solution to the ℓ1 minimization problem and e is the original
signal, with

σk(x) = min
Card(u)≤k

‖u − e‖1

denoting the best possible approximation error.

See Cohen et al. (2009) or Candes (2008) for simple proofs.
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Testing the RIP

• The restricted isometry constant δk(A) can be computed by solving the
following sparse eigenvalue problem

(1 + δmax
k ) = max. xT (AAT )x

s. t. Card(x) ≤ k
‖x‖ = 1,

in x ∈ Rm (a similar problem gives δmin
k and δk(A) = max{δmin

k , δmax
k }).

• SDP relaxation in d’Aspremont et al. (2007):

maximize xTAATx
subject to ‖x‖2 = 1

Card(x) ≤ k,

is bounded by
maximize Tr(AATX)
subject to Tr(X) = 1

1
T |X |1 ≤ k

X � 0,
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Semidefinite relaxation

(Lovász and Schrijver, 1991; Goemans and Williamson, 1995) Start from

maximize xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

where x ∈ Rn. Let X = xxT and write everything in terms of the matrix X

maximize Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT ,

Replace X = xxT by the equivalent X � 0, Rank(X) = 1

maximize Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

again, this is the same problem.
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Semidefinite relaxation

We have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint Tr(X) = 1.

But this is still a hard problem:

• The Card(X) ≤ k2 is still non-convex.

• So is the constraint Rank(X) = 1.

We still need to relax the two non-convex constraints above:

• If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. So we can replace

Card(X) ≤ k2 by the weaker (but convex): 1
T |X |1 ≤ k.

• We simply drop the rank constraint

A. d’Aspremont Stats., U.C. Berkeley, November 2009. 22/38



Semidefinite Programming

Semidefinite relaxation:

max. xTAx
s.t. ‖x‖2 = 1

Card(x) ≤ k,

is bounded by
max. Tr(AX)
s.t. Tr(X) = 1

1
T |X |1 ≤ k

X � 0,

This is a (convex) semidefinite program in the variable X ∈ Sn and can be
solved efficiently (roughly O(n4) in this case).
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Testing the RIP
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Testing the RIP
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Outline

• Introduction

• Testing the RIP

• Testing the NSP

• Limits of performance
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Testing the NSP

Given A ∈ Rm×n and k > 0, Donoho and Huo (2001) or Cohen et al. (2009)
among others, define the Nullspace Property of the matrix A as

‖xT‖1 ≤ αk‖x‖1

for all vectors x ∈ Rn with Ax = 0 and index subsets T ⊂ [1, n] with
cardinality k, for some αk ∈ [0, 1).

Once again, two thresholds:

• α2k < 1 means recovery is guaranteed by solving a ℓ0 minimization problem.

• αk < 1/2 means recovery is guaranteed by solving a ℓ1 minimization problem.

Cohen et al. (2009) show that RIP (2k, δ) implies NSP with
α = (1 + 5δ)/(2 + 2δ), so the NSP is a weaker condition for sparse recovery.
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Testing the NSP

• By homogeneity, we have

αk = max
{Ax=0, ‖x‖1=1}

max
{‖y‖∞=1, ‖y‖1≤k}

yTx

• An upper bound can be computed by solving

maximize Tr(Z)
subject to AXAT = 0, ‖X‖1 ≤ 1,

‖Y ‖∞ ≤ 1, ‖Y ‖1 ≤ k2, ‖Z‖1 ≤ k,
(

X ZT

Z Y

)

� 0,

which is a semidefinite program in X,Y ∈ Sn, Z ∈ Rn×n.

• This is a standard semidefinite relaxation, except for the redundant constraint
‖Z‖1 ≤ k which significantly improves performance. Extra column-wise
redundant constraints further tighten it.

• Another LP-based relaxation was derived in Juditsky and Nemirovski (2008).
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Testing the NSP

• Use an elimination result for LMIs in (Boyd et al., 1994, §2.6.2) to reduce the
size of the problem and express it in terms of a matrix P where AP = 0 with
P TP = I.

• Compute the dual and using binary search to certify αk ≤ 1/2, we solve

maximize λmin

(

P TU1P −1
2P

T (I + U4)
−1

2(I + UT
4 )P U2 + U3

)

subject to ‖U1‖∞ + k2‖U2‖∞ + ‖U3‖1 + k‖U4‖∞ ≤ 1/2

in the variables U1, U2, U3 ∈ Sn and U4 ∈ Rn×n.

• Shows that the relaxation is rotation invariant.
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Testing the NSP

• The complexity of computing the Euclidean projection (x0, y0, z0, w0) ∈ R3n on

‖x‖∞ + k2‖y‖∞ + ‖z‖1 + k‖w‖∞ ≤ α

is bounded by O(n log n log2(1/ǫ)), where ǫ is the target precision in projecting.

• Using smooth optimization techniques as in Nesterov (2007), we get the
following complexity bound:

O

(

n4
√

log n

ǫ

)

• In practice, this is still slow. Much slower than the LP relaxation in Juditsky
and Nemirovski (2008). Slower also than a similar algorithm in d’Aspremont
et al. (2007) to bound the RI constant.
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Testing the NSP

• We can use randomization to generate certificates that αk > 1/2 and show
that sparse recovery fails.

• Concentration result: let X ∈ Sn, x ∼ N (0, X) and δ > 0, we have

P

(

‖x‖1

(
√

2/π +
√

2 log δ)
∑n

i=1 (Xii)
1/2

≥ 1

)

≤ 1

δ

• Highlights the importance of the redundant constraint on Z:

‖Z‖1 ≤
(

n
∑

i=1

(Xii)
1/2

)(

n
∑

i=1

(Yii)
1/2

)

with equality when the SDP solution has rank one.
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Testing the NSP

• Tightness: writing SDPk the optimal value of the relaxation, we have

SDPk − ǫ

g(X, δ)h(Y, n, k, δ)
≤ αk ≤ SDPk

where
g(X, δ) = (

√

2/π +
√

2 log δ)
∑n

i=1 (Xii)
1/2

and

h(Y, n, k, δ) = max{(
√

2 log 2n +
√

2 log δ) max
i=1,...,n

(Yii)
1/2,

(
√

2/π +
√

2 log δ)
∑n

i=1 (Yii)
1/2

k
}

• Because
∑n

i=1(Xii)
1/2 ≤ √

n here, this is roughly

SDPk − ǫ

max
{√

2 log 2n,
√

m
k

√

n
m

√

1
k

}

C
√

n
≤ αk ≤ SDPk
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Testing the NSP

Relaxation ρ α1 α2 α3 α4 α5 Strong k Weak k

LP 0.5 0.27 0.49 0.67 0.83 0.97 2 11

SDP 0.5 0.27 0.49 0.65 0.81 0.94 2 11

SDP low. 0.5 0.27 0.31 0.33 0.32 0.35 2 11

LP 0.6 0.22 0.41 0.57 0.72 0.84 2 12

SDP 0.6 0.22 0.41 0.56 0.70 0.82 2 12

SDP low. 0.6 0.22 0.29 0.31 0.32 0.36 2 12

LP 0.7 0.20 0.34 0.47 0.60 0.71 3 14

SDP 0.7 0.20 0.34 0.46 0.59 0.70 3 14

SDP low. 0.7 0.20 0.27 0.31 0.35 0.38 3 14

LP 0.8 0.15 0.26 0.37 0.48 0.58 3 16

SDP 0.8 0.15 0.26 0.37 0.48 0.58 3 16

SDP low. 0.8 0.15 0.23 0.28 0.33 0.38 3 16

Given ten sample Gaussian matrices of leading dimension n = 40, we list median
upper bounds on the values of αk for various cardinalities k and matrix shape
ratios ρ. We also list the asymptotic upper bound on both strong and weak
recovery computed in Donoho and Tanner (2008) and the lower bound on αk

obtained by randomization using the SDP solution (SDP low.).
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Outline
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Limits of performance

• The SDP relaxation is tight for α1.

• Following Juditsky and Nemirovski (2008), this also means that it can prove
perfect recovery at cardinality k = O(

√
k∗) when A satisfies RIP at the

optimal rate k = O(k∗).

• It cannot do better than k = O(
√

k∗). (Counter-example by A. Nemirovski: for
any matrix A, feasible point of the SDP where k =

√
k∗ with objective greater

than 1/2 in testing the NSP).

• The LP relaxation in Juditsky and Nemirovski (2008) guarantees the same
k = O(

√
k∗) when A satisfies RIP at k = O(k∗). It also cannot do better than

this rate.

• The same kind of argument shows that the DSCPA relaxation in d’Aspremont
et al. (2007) cannot do better than k = O(

√
k∗).

This means that all current convex relaxations for testing sparse recovery
conditions achieve a maximum rate of O(

√
m). . .
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Conclusion

• Good news: Tractable convex relaxations of sparse recovery conditions prove
recovery at cardinality k = O(

√
k∗) for any matrix satisfying NSP at the

optimal rate k = O(k∗).

• Bad news: Testing recovery conditions on deterministic matrices at the
optimal rate O(m) remains an open problem.

What next?

• Improved relaxations.

• Test weak recovery instead.

• Prove hardness of testing NSP and RIP beyond O(
√

m): optimization would
do worst than sampling a few Gaussian variables?
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