Semidefinite Optimization
 with Applications in Sparse Multivariate Statistics

Alexandre d'Aspremont
ORFE, Princeton University

Joint work with L. El Ghaoui, M. Jordan, V. Krishnamurthy, G. Lanckriet, R. Luss and Nathan Srebro.

Support from NSF and Google.

Introduction

Semidefinite Programming:

- Essentially: linear programming over positive semidefinite matrices.
- Sounds very specialized but has applications everywhere (often non-obvious). . .
- One example here: convex relaxations of combinatorial problems.

Sparse Multivariate Statistics:

- Sparse variants of PCA, SVD, etc are combinatorial problems.
- Efficient relaxations using semidefinite programming.
- Solve realistically large problems.

Linear Programming

A linear program (LP) is written:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \succeq 0
\end{array}
$$

its dual is another LP:

$$
\begin{array}{ll}
\text { maximize } & b^{T} x \\
\text { subject to } & A^{T} y \preceq c
\end{array}
$$

- Here, $x \succeq 0$ means that the vector $x \in \mathbf{R}^{n}$ has nonnegative coefficients.
- First solved using the simplex algorithm (exponential complexity).
- Using interior point methods, complexity is $O\left(n^{3.5}\right)$.

Semidefinite Programming

A semidefinite program (SDP) is written:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(C X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

its dual is:

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & \sum_{i} y_{i} A_{i} \preceq C
\end{array}
$$

- Here, $X \succeq 0$ means that the matrix $X \in \mathbf{S}_{n}$ is positive semidefinite.
- Nesterov \& Nemirovskii (1994) extended the complexity analysis of interior point methods used for solving LPs to semidefinite programs (and others).
- Complexity in $O\left(n^{4.5}\right)$ when $m \sim n$ (see Ben-Tal \& Nemirovski (2001)), harder to exploit problem structure such as sparsity, low-rank matrices, etc.

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

Semidefinite relaxations

Easy \& Hard Problems. . .

Classical view on complexity:

- linear is easy
- nonlinear is hard(er)

Correct view:

- convex is easy
- nonconvex is hard(er)

Convex Optimization

Problem format:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0
\end{array}
$$

where $x \in \mathbf{R}^{n}$ is the optimization variable and $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are convex.

- includes LS, LP, QP, and many others
- like LS, LP, and QP, convex problems are fundamentally tractable (cf. ellipsoid method)

Nonconvexity makes problems essentially untractable...

- Sometimes the result of bad problem formulation
- However, often arises because of some natural limitation: fixed transaction costs, binary communications, ...

We can use convex optimization results to find bounds on the optimal value an approximate solutions by relaxation.

Basic Problem

- We focus here on a specific class of problems: Quadratically Constrained Quadratic Programs (QCQP).
- Vast range of applications...

A QCQP can be written:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- If all P_{i} are positive semidefinite, this is a convex problem: easy.
- Here, we suppose at least one P_{i} not p.s.d.

Example: Partitioning Problem

Two-way partitioning problem:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

where $W \in \mathbf{S}_{n}$, with $W_{i i}=0$. A QCQP in the variable $x \in \mathbf{R}^{n}$.

- A feasible x corresponds to the partition

$$
\{1, \ldots, n\}=\left\{i \mid x_{i}=-1\right\} \cup\left\{i \mid x_{i}=1\right\}
$$

- The matrix coefficient $W_{i j}$ can be interpreted as the cost of having the elements i and j in the same partition.
- The objective is to find the partition with least total cost.
- Classic particular instance: MAXCUT $\left(W_{i j} \geq 0\right)$.

Semidefinite Relaxation

The original QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

can be rewritten:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X=x x^{T}
\end{array}
$$

This is the same problem (lifted in \mathbf{S}_{n}).

Semidefinite Relaxation

We can replace $X=x x^{T}$ by $X \succeq x x^{T}, \operatorname{Rank}(X)=1$, so this is again:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X \succeq x x^{T}, \operatorname{Rank}(X)=1
\end{array}
$$

The constraint $X \succeq x x^{T}$ is a Schur complement constraint and is convex. The only remaining nonconvex constraint is now $\operatorname{Rank}(X)=1$. We simply drop it and solve:

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\min \left(X P_{0}\right)+q_{0}^{T} x+r_{0}} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
X & x^{T} \\
x & 1
\end{array}\right] \succeq 0}
\end{array}
$$

This is a semidefinite program in $X \in \mathbf{S}_{n}$.

Semidefinite Relaxation

The original QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

was relaxed as:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
X & x^{T} \\
x & 1
\end{array}\right] \succeq 0}
\end{array}
$$

- The relaxed problem is convex and can be solved efficiently.
- The optimal value of the SDP is a lower bound on the solution of the original problem.

Semidefinite Relaxation: Partitioning

The partitioning problem defined was a QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

There are only quadratic terms, so the variable x disappears from the relaxation, which becomes:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(W X) \\
\text { subject to } & X \succeq 0 \\
& X_{i i}=1, \quad i=1, \ldots, n
\end{array}
$$

- These relaxations only provide a lower bound on the optimal value.
- If $\operatorname{Rank}(X)=1$ at the optimum, $X=x x^{T}$ and the relaxation is tight.
- How can we compute good feasible points otherwise?
- One solution: take the dominant eigenvector of X and project it on $\{-1,1\}$.

Randomization

The original QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m
\end{array}
$$

was relaxed into:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(X P_{0}\right)+q_{0}^{T} x+r_{0} \\
\text { subject to } & \operatorname{Tr}\left(X P_{i}\right)+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& X \succeq x x^{T}
\end{array}
$$

- The last constraint means $X-x x^{T}$ is a covariance matrix...
- Pick y as a Gaussian variable with $y \sim \mathcal{N}\left(x, X-x x^{T}\right)$, y will solve the QCQP "on average" over this distribution, in other words:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{E}\left[y^{T} P_{0} y+q_{0}^{T} y+r_{0}\right] \\
\text { subject to } & \mathbf{E}\left[y^{T} P_{i} y+q_{i}^{T} y+r_{i}\right] \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- A good feasible point can then be obtained by sampling enough x. . .

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

The l_{1} heuristic

Start from a linear system:

$$
A x=b
$$

with $A \in \mathbf{R}^{m \times n}$ where $m<n$. We look for a sparse solution:

$$
\begin{array}{ll}
\underset{\operatorname{Card}(x)}{\operatorname{minimize}} & \operatorname{Cabject~to~} \\
\text { sux }=b .
\end{array}
$$

If the solution set is bounded, this can be formulated as a Mixed Integer Linear Program:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & A x=b \\
& |x| \preceq B u \\
& u \in\{0,1\}^{n} .
\end{array}
$$

This is a hard problem. . .

l_{1} relaxation

Assuming $|x| \leq 1$, we can replace:

$$
\operatorname{Card}(x)=\sum_{i=1}^{n} 1_{\left\{x_{i} \neq 0\right\}}
$$

with

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

Graphically, assuming $x \in[-1,1]$ this is:

The l_{1} norm is the largest convex lower bound on $\operatorname{Card}(x)$ in $[-1,1]$.

l_{1} relaxation

minimize	$\operatorname{Card}(x)$				
subject to	$A x=b$	\quad becomes \quad	minimize $\\|x\\|_{1}$		
:---					
subject to $A x=b$					

- The relaxed problem is a linear program.
- This trick can be used for other problems (cf. minimum rank result from Fazel, Hindi \& Boyd (2001)).
- Candès \& Tao (2005) or Donoho \& Tanner (2005) show that if there is a sufficiently sparse solution, it is optimal and the relaxation is tight. (This result only works in the linear case).

l_{1} relaxation

The original problem in MILP format:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & A x=b \\
& |x| \preceq B u \\
& u \in\{0,1\}^{n},
\end{array}
$$

can be reformulated as a (nonconvex) QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u \\
\text { subject to } & A x=b \\
& -x \preceq B u, x \preceq B u \\
& u_{i}^{2}=u_{i}, \quad i=1, \ldots, n .
\end{array}
$$

- We could also formulate a semidefinite relaxation.
- Lemaréchal \& Oustry (1999) show that this is equivalent to relaxing $u \in\{0,1\}^{n}$ as $u \in[0,1]^{n}$, which is exactly the l_{1} heuristic.

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

Covariance Selection

We estimate a sample covariance matrix Σ from empirical data. . .

- Objective: infer dependence relationships between variables.
- We want this information to be as sparse as possible.
- Basic solution: look at the magnitude of the covariance coefficients:

$$
\left|\Sigma_{i j}\right|>\beta \quad \Leftrightarrow \quad \text { variables } i \text { and } j \text { are related, }
$$

and simply threshold smaller coefficients to zero. (not always psd.)

We can do better. . .

Covariance Selection

Following Dempster (1972), look for zeros in the inverse covariance matrix:

- Parsimony. Suppose that we are estimating a Gaussian density:

$$
f(x, \Sigma)=\left(\frac{1}{2 \pi}\right)^{\frac{p}{2}}\left(\frac{1}{\operatorname{det} \Sigma}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right),
$$

a sparse inverse matrix Σ^{-1} corresponds to a sparse representation of the density f as a member of an exponential family of distributions:

$$
f(x, \Sigma)=\exp \left(\alpha_{0}+t(x)+\alpha_{11} t_{11}(x)+\ldots+\alpha_{r s} t_{r s}(x)\right)
$$

with here $t_{i j}(x)=x_{i} x_{j}$ and $\alpha_{i j}=\Sigma_{i j}^{-1}$.

- Dempster (1972) calls $\Sigma_{i j}^{-1}$ a concentration coefficient.

There is more. . .

Covariance Selection

Conditional independence:

- Suppose X, Y, Z have are jointly normal with covariance matrix Σ, with

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

where $\Sigma_{11} \in \mathbf{R}^{2 \times 2}$ and $\Sigma_{22} \in \mathbf{R}$.

- Conditioned on Z, X, Y are still normally distributed with covariance matrix C given by:

$$
C=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}=\left(\left(\Sigma^{-1}\right)_{11}\right)^{-1}
$$

- So X and Y are conditionally independent iff $\left(\Sigma^{-1}\right)_{11}$ is diagonal, which is also:

$$
\Sigma_{x y}^{-1}=0
$$

Covariance Selection

- Suppose we have iid noise $\epsilon_{i} \sim \mathcal{N}(0,1)$ and the following linear model:

$$
\begin{aligned}
& x=z+\epsilon_{1} \\
& y=z+\epsilon_{2} \\
& z=\epsilon_{3}
\end{aligned}
$$

- Graphically, this is:

Covariance Selection

- The covariance matrix and inverse covariance are given by:

$$
\Sigma=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \Sigma^{-1}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

- The inverse covariance matrix has Σ_{12}^{-1} clearly showing that the variables x and y are independent conditioned on z.
- Graphically, this is again:

Covariance Selection

On a slightly larger scale. . .

Before

After

Applications \& Related Work

- Gene expression data. The sample data is composed of gene expression vectors and we want to isolate links in the expression of various genes. See Dobra, Hans, Jones, Nevins, Yao \& West (2004), Dobra \& West (2004) for example.
- Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen \& Gopinath (1999).
- Finance. Covariance estimation.
- Related work by Dahl, Roychowdhury \& Vandenberghe (2005): interior point methods for large, sparse MLE.

Maximum Likelihood Estimation

- We can estimate Σ by solving the following maximum likelihood problem:

$$
\max _{X \in \mathbf{S}^{n}} \log \operatorname{det} X-\operatorname{Tr}(S X)
$$

- This problem is convex, has an explicit answer $\Sigma=S^{-1}$ if $S \succ 0$.
- Problem here: how do we make Σ^{-1} sparse?
- In other words, how do we efficiently choose I and J ?
- Solution: penalize the MLE.

AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

$$
\max _{X \in \mathbf{S}^{n}} \log \operatorname{det} X-\operatorname{Tr}(S X)-\rho \mathbf{C a r d}(X)
$$

where $\operatorname{Card}(X)$ is the number of nonzero elements in X.

- Set $\rho=2 /(m+1)$ for AIC and $\rho=\log (m+1) /(m+1)$ for BIC.
- We can form a convex relaxation of AIC or BIC penalized MLE by replacing $\operatorname{Card}(X)$ by $\|X\|_{1}=\sum_{i j}\left|X_{i j}\right|$ to solve:

$$
\max _{X \in \mathbf{S}^{n}} \log \operatorname{det} X-\operatorname{Tr}(S X)-\rho\|X\|_{1}
$$

Again, the classic l_{1} heuristic: $\|X\|_{1}$ is a convex lower bound on $\operatorname{Card}(X)$.

Robustness

- This penalized MLE problem can be rewritten:

$$
\max _{X \in \mathbf{S}^{n}} \min _{\left|U_{i j}\right| \leq \rho} \log \operatorname{det} X-\operatorname{Tr}((S+U) X)
$$

- This can be interpreted as a robust MLE problem with componentwise noise of magnitude ρ on the elements of S.
- The relaxed sparsity requirement is equivalent to a robustification.

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

Sparse Principal Component Analysis

Principal Component Analysis (PCA): classic tool in multivariate data analysis

- Input: a covariance matrix A
- Output: a sequence of factors ranked by variance
- Each factor is a linear combination of the problem variables

Typical use: dimensionality reduction.

Numerically, just an eigenvalue decomposition of the covariance matrix:

$$
A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}
$$

Sparse Principal Component Analysis

Computing factors amounts to solving:

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{maximize} & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 .
\end{array} .=\text {. }
\end{array}
$$

This problem is easy, its solution is again $\lambda^{\max }(A)$ at x_{1}. Here however, we want a little bit more...

We look for a sparse solution and solve instead:

$$
\begin{aligned}
& \text { maximize } \quad x^{T} A x \\
& \text { subject to }\|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{aligned}
$$

where $\operatorname{Card}(x)$ denotes the cardinality (number of non-zero elements) of x. This is non-convex and numerically hard.

Related literature

Previous work:

- Cadima \& Jolliffe (1995): the loadings with small absolute value are thresholded to zero.
- A non-convex method called SCoTLASS by Jolliffe, Trendafilov \& Uddin (2003). (Same problem formulation)
- Zou, Hastie \& Tibshirani (2004): a regression based technique called SPCA. Based on a representation of PCA as a regression problem. Sparsity is obtained using the LASSO Tibshirani (1996) a l_{1} norm penalty.

Performance:

- These methods are either very suboptimal (thresholding) or lead to nonconvex optimization problems (SPCA).
- Regression: works for very large scale examples.

Semidefinite relaxation

Start from

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

Let $X=x x^{T}$, and write everything in terms of the matrix X :

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T},
\end{array}
$$

Replace $X=x x^{T}$ by the equivalent $X \succeq 0, \operatorname{Rank}(X)=1$:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X \succeq 0, \operatorname{Rank}(X)=1,
\end{array}
$$

again, this is the same problem.

Semidefinite relaxation

Numerically, this is still hard:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex
- So is the constraint $\operatorname{Rank}(X)=1$

However, we have made some progress:

- The objective $\operatorname{Tr}(A X)$ is now linear in X
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbf{R}^{p}, \operatorname{Card}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. So we can replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex): $\mathbf{1}^{T}|X| \mathbf{1} \leq k$
- Simply drop the rank constraint

Semidefinite relaxation

Semidefinite relaxation combined with l_{1} heuristic:

\max	$x^{T} A x$	becomes	max		
subject to	$\\|x\\|_{2}=1$	$\operatorname{Tr}(A X)$			
	$\operatorname{Card}(x) \leq k$,		$\operatorname{Tr}(X)=1$		
			$\mathbf{1}^{T}\|X\| \mathbf{1} \leq k$		
		$X \succeq 0$,			

- This is a semidefinite program in the variable $X \in \mathbf{S}^{n}$, polynomial complexity. . .
- Small problem instances can be solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd \& Tutuncu (1999).
- This semidefinite program has $O\left(n^{2}\right)$ dense constraints on the matrix, we want to solve large problems $n \sim 10^{3}$.

Can't use interior point methods. . .

Robustness \& Tightness

Robustness. The penalized problem can be written:

$$
\min _{\left\{\left|U_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+U)
$$

Natural interpretation: robust maximum eigenvalue problem with componentwise noise of magnitude ρ on the coefficients of the matrix A.

Tightness. The KKT optimality conditions are here:

$$
\left\{\begin{array}{l}
(A+U) X=\lambda^{\max }(A+U) X \\
U \circ X=\rho|X| \\
\operatorname{Tr}(X)=1, \quad X \succeq 0 \\
\left|U_{i j}\right| \leq \rho, \quad i, j=1, \ldots, n
\end{array}\right.
$$

The first order condition means that if $\lambda^{\max }(A+U)$ is simple, $\boldsymbol{\operatorname { R a n k }}(X)=1$ so the relaxation is tight: the solution to the relaxed problem is also a global optimum for the original combinatorial problem.

Sparse Singular Value Decomposition

A similar reasoning involves a non-square $m \times n$ matrix A, and the problem

$$
\begin{array}{ll}
\max & u^{T} A v \\
\text { subject to } & \|u\|_{2}=\|v\|_{2}=1 \\
& \operatorname{Card}(u) \leq k_{1}, \quad \operatorname{Card}(v) \leq k_{2}
\end{array}
$$

in the variables $(u, v) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$ where $k_{1} \leq m, k_{2} \leq n$ are fixed. This is relaxed as:

$$
\begin{array}{ll}
\max & \operatorname{Tr}\left(A^{T} X^{12}\right) \\
\text { subject to } & \mathbf{1}^{T}\left|X^{i i}\right| \mathbf{1} \leq k_{i}, \quad i=1,2 \\
& \mathbf{1}^{T}\left|X^{12}\right| \mathbf{1} \leq \sqrt{k_{1} k_{2}} \\
& X \succeq 0, \operatorname{Tr}\left(X^{i i}\right)=1
\end{array}
$$

in the variable $X \in \mathbf{S}^{m+n}$ with blocks $X^{i j}$ for $i, j=1,2$, using the fact that the eigenvalues of the matrix:

$$
\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]
$$

are $\left\{\sigma_{i}, \ldots,-\sigma_{i}, \ldots\right\}$ where σ are the singular values of the matrix $A \in \mathbf{R}^{m \times n}$.

Nonnegative Matrix Factorization

Direct extension of sparse PCA result. . . Solving

$$
\begin{array}{ll}
\max & u^{T} A v \\
\text { subject to } & \|u\|_{2}=\|v\|_{2}=1 \\
& \operatorname{Card}(u) \leq k_{1}, \operatorname{Card}(v) \leq k_{2},
\end{array}
$$

also solves:

$$
\begin{array}{ll}
\min _{\text {subject to }} & \left\|A-u v^{T}\right\|_{F} \\
& \operatorname{Card}(u) \leq k_{1} \\
& \operatorname{Card}(v) \leq k_{2},
\end{array}
$$

So, by adding constraints on u and v we can use the previous result to form a relaxation for the Nonnegative Matrix Factorization problem:

$$
\begin{array}{ll}
\max & \operatorname{Tr}\left(A^{T} X^{12}\right) \\
\text { subject to } & \mathbf{1}^{T}\left|X^{i i}\right| \mathbf{1} \leq k_{i}, \quad i=1,2 \\
& \mathbf{1}^{T}\left|X^{12}\right| \mathbf{1} \leq \sqrt{k_{1} k_{2}} \\
& X \succeq 0, \operatorname{Tr}\left(X^{i i}\right)=1 \\
& X_{i j} \geq 0,
\end{array}
$$

Caveat: only works with rank one factorization. . .

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

Outline

Most of our problems are dense, with $n \sim 10^{3}$.

Solver options:

- Interior point methods fail beyond $n \sim 400$.
- Projected subgradient: extremely slow.
- Bundle method (see Helmberg \& Rendl (2000)): a bit faster, but can't take advantage of box-like structure of feasible set. Convergence in $O\left(1 / \epsilon^{2}\right)$.

First order algorithm

Complexity options. . .
$O(n)$
$O(n)$
$O\left(n^{2}\right)$

Memory

| $O\left(1 / \epsilon^{2}\right)$ | $O(1 / \epsilon)$ | $O(\log (1 / \epsilon))$ |
| :--- | :--- | :--- | :--- |
| First-order | Smooth | Newton IP Complexity |

First order algorithm

Here, we can exploit problem structure

- Our problems here have min-max structure. For sparse PCA:

$$
\min _{\left|U_{i j}\right| \leq \rho} \lambda^{\max }(A+U)=\min _{\left|U_{i j}\right| \leq \rho} \max _{X \in \mathbf{S}^{n}} \operatorname{Tr}((A+U) X)
$$

- This min-max structure means that we can use prox function algorithms by Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense problem instances.

First order algorithm

Solve

$$
\min _{x \in Q_{1}} f(x)
$$

- Starts from a particular min-max model on the problem:

$$
f(x)=\hat{f}(x)+\max _{u}\left\{\langle T x, u\rangle-\hat{\phi}(u): u \in Q_{2}\right\}
$$

- assuming that:
- f is defined over a compact convex set $Q_{1} \subset \mathbf{R}^{n}$
- $\hat{f}(x)$ is convex, differentiable and has a Lipschitz continuous gradient with constant $M \geq 0$
- T is a linear operator: $T \in \mathbf{R}^{n \times n}$
- $\hat{\phi}(u)$ is a continuous convex function over some compact set $Q_{2} \subset \mathbf{R}^{n}$.

First order algorithm

If problem has min-max model, two steps:

- Regularization. Add strongly convex penalty inside the min-max representation to produce an ϵ-approximation of f with Lipschitz continuous gradient (generalized Moreau-Yosida regularization step, see Lemaréchal \& Sagastizábal (1997) for example).
- Optimal first order minimization. Use optimal first order scheme for Lipschitz continuous functions detailed in Nesterov (1983) to the solve the regularized problem.

Benefits:

- For fixed problem size, the number of iterations required to get an ϵ solution is given by $O(1 / \epsilon)$ compared to $O\left(1 / \epsilon^{2}\right)$ for generic first-order methods.
- Low memory requirements: change in granularity of the solver: larger number of cheaper iterations.

Caveat: Only efficient if the subproblems involved in these steps can be solved explicitly or extremely efficiently. . .

First order algorithm

Regularization. We can find a uniform ϵ-approximation to $\lambda^{\max }(X)$ with Lipschitz continuous gradient. Let $\mu>0$ and $X \in \mathbf{S}_{n}$, we define:

$$
f_{\mu}(X)=\mu \log \operatorname{Tr}\left(\exp \left(\frac{X}{\mu}\right)\right)
$$

which requires computing a matrix exponential at a numerical cost of $O\left(n^{3}\right)$. We then have:

$$
\lambda^{\max }(X) \leq f_{\mu}(X) \leq \lambda^{\max }(X)+\mu \log n
$$

so if we set $\mu=\epsilon / \log n, f_{\mu}(X)$ becomes a uniform ϵ-approximation of $\lambda^{\max }(X)$ and $f_{\mu}(X)$ has a Lipschitz continuous gradient with constant:

$$
L=\frac{1}{\mu}=\frac{\log n}{\epsilon}
$$

The gradient $\nabla f_{\mu}(X)$ can also be computed explicitly as:

$$
\exp \left(\frac{X-\lambda^{\max }(X) \mathbf{I}}{\mu}\right) / \operatorname{Tr}\left(\exp \left(\frac{X-\lambda^{\max }(X) \mathbf{I}}{\mu}\right)\right)
$$

using the same matrix exponential.

First order algorithm

Optimal first-order minimization. The minimization algorithm in Nesterov (1983) then involves the following steps:

Choose $\epsilon>0$ and set $X_{0}=\beta I_{n}$, For $k=0, \ldots, N(\epsilon)$ do

1. Compute $\nabla f_{\epsilon}\left(X_{k}\right)$
2. Find $Y_{k}=\arg \min _{Y}\left\{\operatorname{Tr}\left(\nabla f_{\epsilon}\left(X_{k}\right)\left(Y-X_{k}\right)\right)+\frac{1}{2} L_{\epsilon}\left\|Y-X_{k}\right\|_{F}^{2}: Y \in \mathcal{Q}_{1}\right\}$.
3. Find
$Z_{k}=\arg \min _{X}\left\{L_{\epsilon} \beta^{2} d_{1}(X)+\sum_{i=0}^{k} \frac{i+1}{2} \operatorname{Tr}\left(\nabla f_{\epsilon}\left(X_{i}\right)\left(X-X_{i}\right)\right): X \in \mathcal{Q}_{1}\right\}$.
4. Update $X_{k}=\frac{2}{k+3} Z_{k}+\frac{k+1}{k+3} Y_{k}$.
5. Test if gap less than target precision.

- Step 1 requires computing a matrix exponential.
- Steps 2 and 3 are both Euclidean projections on $Q_{1}=\left\{U: \mid U_{i j} \leq \rho\right\}$.

First order algorithm

Complexity:

- The number of iterations to get accuracy ϵ is

$$
O\left(\frac{n \sqrt{\log n}}{\epsilon}\right) .
$$

- At each iteration, the cost of computing a matrix exponential up to machine precision is $O\left(n^{3}\right)$.

Computing matrix exponentials:

- Many options, cf. "Nineteen Dubious Ways to Compute the Exponential of a Matrix" by Moler \& Van Loan (2003).
- Padé approximation, full eigenvalue decomposition: $O\left(n^{3}\right)$ up to machine precision.
- In practice, machine precision is unnecessary. . .

First order algorithm

In d'Aspremont (2005): When minimizing a function with Lipschitz-continuous gradient using the method in Nesterov (1983), an approximate gradient is sufficient to get the $O(1 / \epsilon)$ convergence rate. If the function and gradient approximations satisfy:

$$
|f(x)-\tilde{f}(x)| \leq \delta \quad \text { and } \quad|\langle\tilde{\nabla} f(x)-\nabla f(x), y\rangle| \leq \delta \quad x, y \in Q_{1}
$$

we have:

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{L d\left(x^{\star}\right)}{(k+1)(k+2) \sigma}+10 \delta
$$

where $L, d\left(x^{\star}\right)$ and σ are problem constants.

- Only a few dominant eigs. are required to get the matrix exponential.
- Dominant eigenvalues with ARPACK: cubic convergence.
- Optimal complexity of $O(1 / \epsilon)$, same cost per iteration as regular methods with complexity $O\left(1 / \epsilon^{2}\right)$.
- ARPACK exploits sparsity.

Outline

- Two classic relaxation tricks
- Semidefinite relaxations and the lifting technique
- The l_{1} heuristic
- Applications
- Covariance selection
- Sparse PCA, SVD
- Sparse nonnegative matrix factorization
- Solving large-scale semidefinite programs
- First-order methods
- Numerical performance

Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.

$$
\rho=0
$$

$$
\rho=.01
$$

Zoom. . .

Covariance Selection

Classification Error. Sensitivity/Specificity curves for the solution to the covariance selection problem compared with a simple thresholding of B^{-1}, for various levels of noise: $\sigma=0.3$ (left) and $\sigma=0.5$ (right). Here $n=50$.

Sparse PCA

PCA

Sparse PCA

Clustering of the gene expression data in the PCA versus sparse PCA basis with 500 genes. The factors f on the left are dense and each use all 500 genes while the sparse factors g_{1}, g_{2} and g_{3} on the right involve 6,4 and 4 genes respectively. (Data: Iconix Pharmaceuticals)

Sparse PCA

PCA Clustering (left) \& DSPCA Clustering (right), colon cancer data set in Alon, Barkai, Notterman, Gish, Ybarra, Mack \& Levine (1999).

Smooth first-order vs IP

Figure 1: CPU time and memory usage versus n.

Sparse PCA

Eigenvalues vs. CPU Time (left), Duality Gap vs Eigs. (right), on 1000 genes.

Sparse PCA

Sparsity versus Rand Index on colon cancer data set.

Sparse Nonnegative Matrix Factorization

Test relaxation on a matrix of the form:

$$
M=x y^{T}+U
$$

where U is uniform noise.

Conclusion

- Semidefinite relaxations of combinatorial problems in multivariate statistics.
- Infer sparse structural information on large datasets.
- Efficient codes can solve problems of with 10^{3} variables in a few minutes.

Source code and binaries for sparse PCA (DSPCA) and covariance selection (COVSEL) available at:

> WWW.princeton.edu/~aspremon

These slides are available at:
Www.princeton.edu/~aspremon/Banff07.pdf

References

Akaike, J. (1973), Information theory and an extension of the maximum likelihood principle, in B. N. Petrov \& F. Csaki, eds, 'Second international symposium on information theory', Akedemiai Kiado, Budapest, pp. 267-281.
Alon, A., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. \& Levine, A. J. (1999), 'Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays', Cell Biology 96, 6745-6750.
Ben-Tal, A. \& Nemirovski, A. (2001), Lectures on modern convex optimization : analysis, algorithms, and engineering applications, MPS-SIAM series on optimization, Society for Industrial and Applied Mathematics : Mathematical Programming Society, Philadelphia, PA.

Bilmes, J. A. (1999), 'Natural statistic models for automatic speech recognition', Ph.D. thesis, UC Berkeley, Dept. of EECS, CS Division .
Bilmes, J. A. (2000), 'Factored sparse inverse covariance matrices', IEEE International Conference on Acoustics, Speech, and Signal Processing
Cadima, J. \& Jolliffe, I. T. (1995), 'Loadings and correlations in the interpretation of principal components', Journal of Applied Statistics 22, 203-214.
Candès, E. \& Tao, T. (2005), 'Decoding by linear programming', ArXiv: math.MG/0502327.
Chen, S. S. \& Gopinath, R. A. (1999), 'Model selection in acoustic modeling', EUROSPEECH
Dahl, J., Roychowdhury, V. \& Vandenberghe, L. (2005), 'Maximum likelihood estimation of gaussian graphical models: numerical implementation and topology selection', UCLA preprint.
d'Aspremont, A. (2005), 'Smooth optimization for sparse semidefinite programs', ArXiv: math.OC/0512344 .
Dempster, A. (1972), 'Covariance selection', Biometrics 28, 157-175.
Dobra, A., Hans, C., Jones, B., Nevins, J. J. R., Yao, G. \& West, M. (2004), 'Sparse graphical models for exploring gene expression data', Journal of Multivariate Analysis 90(1), 196-212.
Dobra, A. \& West, M. (2004), 'Bayesian covariance selection', working paper .
Donoho, D. L. \& Tanner, J. (2005), 'Sparse nonnegative solutions of underdetermined linear equations by linear programming', Proceedings of the National Academy of Sciences 102(27), 9446-9451.
Fazel, M., Hindi, H. \& Boyd, S. (2001), 'A rank minimization heuristic with application to minimum order system approximation', Proceedings American Control Conference 6, 4734-4739.
Helmberg, C. \& Rendl, F. (2000), 'A spectral bundle method for semidefinite programming', SIAM Journal on Optimization 10(3), 673-696.
Jolliffe, I. T., Trendafilov, N. \& Uddin, M. (2003), 'A modified principal component technique based on the LASSO', Journal of Computational and Graphical Statistics 12, 531-547.

Lemaréchal, C. \& Oustry, F. (1999), 'Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization', INRIA, Rapport de recherche 3710.
Lemaréchal, C. \& Sagastizábal, C. (1997), 'Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries', SIAM Journal on Optimization 7(2), 367-385.
Moler, C. \& Van Loan, C. (2003), 'Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later', SIAM Review 45(1), 3-49.
Nemirovski, A. (2004), 'Prox-method with rate of convergence $O(1 / T)$ for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems', SIAM Journal on Optimization 15(1), 229-251.
Nesterov, Y. (1983), 'A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$ ', Soviet Mathematics Doklady 27(2), 372-376.
Nesterov, Y. (2005), 'Smooth minimization of nonsmooth functions', Mathematical Programming, Series A 103, 127-152.
Nesterov, Y. \& Nemirovskii, A. (1994), Interior-point polynomial algorithms in convex programming, Society for Industrial and Applied Mathematics, Philadelphia.
Sturm, J. (1999), 'Using SEDUMI 1.0x, a MATLAB toolbox for optimization over symmetric cones', Optimization Methods and Software 11, 625-653.
Tibshirani, R. (1996), 'Regression shrinkage and selection via the LASSO', Journal of the Royal statistical society, series B 58(1), 267-288.
Toh, K. C., Todd, M. J. \& Tutuncu, R. H. (1999), 'SDPT3 - a MATLAB software package for semidefinite programming', Optimization Methods and Software 11, 545-581.
Zou, H., Hastie, T. \& Tibshirani, R. (2004), 'Sparse principal component analysis', To appear in Journal of Computational and Graphical Statistics.

