Regularized Nonlinear Acceleration.

Alexandre d'Aspremont, CNRS \& D.I. ENS.

with Damien Scieur \& Francis Bach.
Support from ERC SIPA and ITN MacSeNet.

Jobs

Laplace Junior Faculty positions (two to three years) in data science.

At Ecole Normale Supérieure in Paris, competitive salary, travel fund.

See https://data-ens.github.io/jobs/

Introduction

Generic convex optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Introduction

Algorithms produce a sequence of iterates.

We only keep the last (or best) one. . .

Introduction

Aitken's Δ^{2} [Aitken, 1927]. Given a sequence $\left\{s_{k}\right\}_{k=1, \ldots} \in \mathbb{R}^{\mathbb{N}}$ with limit s_{*}, and suppose

$$
s_{k+1}-s_{*}=a\left(s_{k}-s_{*}\right), \quad \text { for } k=1, \ldots
$$

We can compute a using

$$
s_{k+1}-s_{k}=a\left(s_{k}-s_{k-1}\right) \quad \Rightarrow \quad a=\frac{s_{k+1}-s_{k}}{s_{k}-s_{k-1}}
$$

and get the limit s^{*} by solving

$$
s_{k+1}-s^{*}=\frac{s_{k+1}-s_{k}}{s_{k}-s_{k-1}}\left(s_{k}-s^{*}\right)
$$

which yields

$$
s^{*}=\frac{s_{k-1} s_{k+1}-s_{k}^{2}}{s_{k+1}-2 s_{k}+s_{k-1}}
$$

This is Aitken's Δ^{2} and allows us to compute s_{*} from $\left\{s_{k+1}, s_{k}, s_{k-1}\right\}$.

Introduction

Aitken's Δ^{2} [Aitken, 1927], again. Given a sequence $\left\{s_{k}\right\}_{k=1, \ldots} \in \mathbb{R}^{\mathbb{N}}$ with limit s_{*}, and suppose that for $k=1, \ldots$,

$$
a_{0}\left(s_{k}-s_{*}\right)+a_{1}\left(s_{k+1}-s_{*}\right)=0 \quad \text { and } a_{0}+a_{1}=1 \quad \text { (normalization) }
$$

We have

$$
\begin{aligned}
& \underbrace{\left(a_{0}+a_{1}\right)}_{=1} s_{*}=a_{0} s_{k-1}+a_{1} s_{k} \\
& 0=a_{0}\left(s_{k}-s_{k-1}\right)+a_{1}\left(s_{k+1}-s_{k}\right)
\end{aligned}
$$

We get s^{*} using

$$
\left[\begin{array}{ccc}
0 & s_{k+1}-s_{k} & s_{k}-s_{k-1} \\
-1 & s_{k} & s_{k-1} \\
0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
s^{*} \\
a_{1} \\
a_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \Leftrightarrow \quad s^{*}=\frac{\left|\begin{array}{cc}
s_{k+1}-s_{k} & s_{k}-s_{k-1} \\
s_{k} & s_{k-1}
\end{array}\right|}{\left|\begin{array}{cc}
s_{k+1}-s_{k} & s_{k}-s_{k-1} \\
1 & 1
\end{array}\right|}
$$

Same formula as before, but generalizes to higher dimensions.

Introduction

Convergence acceleration. Consider

$$
s_{k}=\sum_{i=0}^{k} \frac{(-1)^{i}}{(2 i+1)} \quad \xrightarrow{k \rightarrow \infty} \quad \frac{\pi}{4}=0.785398 \ldots
$$

we have

k	$\frac{(-1)^{k}}{(2 k+1)}$	$\sum_{i=0}^{k} \frac{(-1)^{i}}{(2 i+1)}$	Δ^{2}
0	1	1.0000	-
1	-0.33333	0.66667	-
2	0.2	0.86667	$\mathbf{0 . 7 9 1 6 7}$
3	-0.14286	$\mathbf{0 . 7 2 3 8 1}$	$\mathbf{0 . 7 8 3 3 3}$
4	0.11111	0.83492	$\mathbf{0 . 7 8 6 3 1}$
5	-0.090909	$\mathbf{0 . 7 4 4 0 1}$	$\mathbf{0 . 7 8 4 9 2}$
6	0.076923	0.82093	$\mathbf{0 . 7 8 5 6 8}$
7	-0.066667	$\mathbf{0 . 7 5 4 2 7}$	$\mathbf{0 . 7 8 5 2 2}$
8	0.058824	0.81309	$\mathbf{0 . 7 8 5 5 2}$
9	-0.052632	$\mathbf{0 . 7 6 0 4 6}$	$\mathbf{0 . 7 8 5 3 1}$

Introduction

Convergence acceleration.

- Similar results apply to sequences satisfying

$$
\sum_{i=0}^{k} a_{i}\left(s_{n+i}-s_{*}\right)=0
$$

using Aitken's ideas recursively.

- This produces Wynn's ε-algorithm [Wynn, 1956].
- See [Brezinski, 1977] for a survey on acceleration, extrapolation.
- Directly related to the Levinson-Durbin algo on AR processes.
- Vector case: focus on Minimal Polynomial Extrapolation [Sidi et al., 1986].

Overall: a simple postprocessing step.

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Minimal Polynomial Extrapolation

Quadratic example. Minimize

$$
f(x)=\frac{1}{2}\|B x-b\|_{2}^{2}
$$

using the basic gradient algorithm, with

$$
x_{k+1}:=x_{k}-\frac{1}{L}\left(B^{T} B x_{k}-b\right) .
$$

we get

$$
x_{k+1}-x^{*}:=\underbrace{\left(\mathbf{I}-\frac{1}{L} B^{T} B\right)}_{A}\left(x_{k}-x^{*}\right)
$$

since $B^{T} B x^{*}=b$.

This means $x_{k+1}-x^{*}$ follows a vector autoregressive process.

Minimal Polynomial Extrapolation

We have

$$
\sum_{i=0}^{k} c_{i}\left(x_{i}-x^{*}\right)=\sum_{i=1}^{k} c_{i} A^{i}\left(x_{0}-x^{*}\right)
$$

and setting $\mathbf{1}^{T} c=1$, yields

$$
\left(\sum_{i=0}^{k} c_{i} x_{i}\right)-x^{*}=p(A)\left(x_{0}-x^{*}\right), \quad \text { where } p(v)=\sum_{i=1}^{k} c_{i} v^{i}
$$

- Setting c such that $p(A)\left(x_{0}-x^{*}\right)=0$, we would have

$$
\mathrm{x}^{*}=\sum_{\mathrm{i}=0}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}
$$

- Get the limit by averaging iterates (using weights depending on x_{k}).
- We typically do not observe A (or x^{*}).
- How do we extract c from the iterates x_{k} ?

Minimal Polynomial Extrapolation

We have

$$
\begin{aligned}
x_{k}-x_{k-1} & =\left(x_{k}-x^{*}\right)-\left(x_{k-1}-x^{*}\right) \\
& =(A-\mathbf{I}) A^{k-1}\left(x_{0}-x^{*}\right)
\end{aligned}
$$

hence if $p(A)=0$, we must have

$$
\sum_{i=1}^{k} c_{i}\left(x_{i}-x_{i-1}\right)=(A-\mathbf{I}) p(A)\left(x_{0}-x^{*}\right)=0
$$

so if $(A-\mathbf{I})$ is nonsingular, the coefficient vector c solves the linear system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} c_{i}\left(x_{i}-x_{i-1}\right)=0 \\
\sum_{i=1}^{k} c_{i}=1
\end{array}\right.
$$

and $p(\cdot)$ is the minimal polynomial of A w.r.t. $\left(x_{0}-x^{*}\right)$.

Approximate Minimal Polynomial Extrapolation

Approximate MPE.

- For k smaller than the degree of the minimal polynomial, we find c that minimizes the residual

$$
\left\|(A-\mathbf{I}) p(A)\left(x_{0}-x^{*}\right)\right\|_{2}=\left\|\sum_{i=1}^{k} c_{i}\left(x_{i}-x_{i-1}\right)\right\|_{2}
$$

- Setting $U \in \mathbb{R}^{n \times k+1}$, with $U_{i}=x_{i+1}-x_{i}$, this means solving

$$
\begin{equation*}
c^{*} \triangleq \underset{1}{\operatorname{argmin}}\|U c\|_{2} \tag{AMPE}
\end{equation*}
$$

in the variable $c \in \mathbb{R}^{k+1}$.

- Also known as Eddy-Mešina method [Mešina, 1977, Eddy, 1979] or Reduced Rank Extrapolation with arbitrary k (see [Smith et al., 1987, §10]).

Uniform Bound

Chebyshev polynomials. Crude bound on $\left\|U c^{*}\right\|_{2}$ using Chebyshev polynomials, to bound error as a function of k, with

$$
\begin{aligned}
\left\|\sum_{i=0}^{k} c_{i}^{*} x_{i}-x^{*}\right\|_{2} & =\left\|(I-A)^{-1} \sum_{i=0}^{k} c_{i}^{*} U_{i}\right\|_{2} \\
& \leq\left\|(I-A)^{-1}\right\|_{2}\left\|p(A)\left(x_{1}-x_{0}\right)\right\|_{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left\|p(A)\left(x_{1}-x_{0}\right)\right\|_{2} & \leq\|p(A)\|_{2}\left\|\left(x_{1}-x_{0}\right)\right\|_{2} \\
& =\max _{i=1, \ldots, n}\left|p\left(\lambda_{i}\right)\right|\left\|\left(x_{1}-x_{0}\right)\right\|_{2}
\end{aligned}
$$

where $0 \leq \lambda_{i} \leq \sigma$ are the eigenvalues of A. It suffices to find $p(\cdot) \in \mathbb{R}_{k}[x]$ solving

$$
\inf _{\left\{p \in \mathbb{R}_{k}[x]: p(1)=1\right\}} \sup _{v \in[0, \sigma]}|p(v)|
$$

Explicit solution using modified Chebyshev polynomials.

Uniform Bound using Chebyshev Polynomials

Chebyshev polynomials $T_{3}(x, \sigma)$ and $T_{5}(x, \sigma)$ for $x \in[0,1]$ and $\sigma=0.85$. The maximum value of T_{k} on $[0, \sigma]$ decreases geometrically fast when k grows.

Approximate Minimal Polynomial Extrapolation

Proposition

AMPE convergence. Let A be symmetric, $0 \preceq A \preceq \sigma I$ with $\sigma<1$ and c^{*} be the solution of (AMPE). Then

$$
\begin{equation*}
\left\|\sum_{i=0}^{k} c_{i}^{*} x_{i}-x^{*}\right\|_{2} \leq \kappa(A-I) \frac{2 \zeta^{k}}{1+\zeta^{2 k}}\left\|x_{0}-x^{*}\right\|_{2} \tag{1}
\end{equation*}
$$

where $\kappa(A-I)$ is the condition number of the matrix $A-I$ and ζ is given by

$$
\begin{equation*}
\zeta=\frac{1-\sqrt{1-\sigma}}{1+\sqrt{1-\sigma}}<\sigma \tag{2}
\end{equation*}
$$

See also [Nemirovskiy and Polyak, 1984]. Gradient method, $\sigma=1-\mu / L$, so

$$
\left\|\sum_{i=0}^{k} c_{i}^{*} x_{i}-x^{*}\right\|_{2} \leq \kappa(A-I)\left(\frac{1-\sqrt{\mu / L}}{1+\sqrt{\mu / L}}\right)^{k}\left\|x_{0}-x^{*}\right\|_{2}
$$

Approximate Minimal Polynomial Extrapolation

AMPE versus Nesterov, conjugate gradient.

- Key difference with conjugate gradient: we do not observe A. .

■ Chebyshev polynomials satisfy a two-step recurrence. For quadratic minimization using the gradient method:

$$
\left\{\begin{array}{l}
z_{k-1}=y_{k-1}-\frac{1}{L}\left(B y_{k-1}-b\right) \\
y_{k}=\frac{\alpha_{k-1}}{\alpha_{k}}\left(\frac{2 z_{k-1}}{\sigma}-y_{k-1}\right)-\frac{\alpha_{k-2}}{\alpha_{k}} y_{k-2}
\end{array}\right.
$$

where $\alpha_{k}=\frac{2-\sigma}{\sigma} \alpha_{k-1}-\alpha_{k-2}$

- Nesterov's acceleration recursively computes a similar polynomial with

$$
\left\{\begin{array}{l}
z_{k-1}=y_{k-1}-\frac{1}{L}\left(B y_{k-1}-b\right) \\
y_{k}=z_{k-1}+\beta_{k}\left(z_{k-1}-z_{k-2}\right)
\end{array}\right.
$$

see also [Hardt, 2013].

Approximate Minimal Polynomial Extrapolation

Accelerating optimization algorithms. For gradient descent, we have

$$
\tilde{x}_{k+1}:=\tilde{x}_{k}-\frac{1}{L} \nabla f\left(\tilde{x}_{k}\right)
$$

- This means $\tilde{x}_{k+1}-x^{*}:=A\left(\tilde{x}_{k}-x^{*}\right)+O\left(\left\|\tilde{x}_{k}-x^{*}\right\|_{2}^{2}\right)$ where

$$
A=I-\frac{1}{L} \nabla^{2} f\left(x^{*}\right),
$$

meaning that $\|A\|_{2} \leq 1-\frac{\mu}{L}$, whenever $\mu I \preceq \nabla^{2} f(x) \preceq L I$.

- Approximation error is a sum of three terms

$$
\left\|\sum_{i=0}^{k} \tilde{c}_{i} \tilde{x}_{i}-x^{*}\right\|_{2} \leq \underbrace{\left\|\sum_{i=0}^{k} c_{i} x_{i}-x^{*}\right\|_{2}}_{\text {AMPE }}+\underbrace{\left\|\sum_{i=0}^{k}\left(\tilde{c}_{i}-c_{i}\right) x_{i}\right\|_{2}}_{\text {Stability }}+\underbrace{\left\|\sum_{i=0}^{k} \tilde{c}_{i}\left(\tilde{x}_{i}-x_{i}\right)\right\|_{2}}_{\text {Nonlinearity }}
$$

Stability is key here.

Approximate Minimal Polynomial Extrapolation

Stability.

- The iterations span a Krylov subspace

$$
\mathcal{K}_{k}=\operatorname{span}\left\{U_{0}, A U_{0}, \ldots, A^{k-1} U_{0}\right\}
$$

so the matrix U in AMPE is a Krylov matrix.

- Similar to Hankel or Toeplitz case. $U^{T} U$ has a condition number typically growing exponentially with dimension [Tyrtyshnikov, 1994].
- In fact, the Hankel, Toeplitz and Krylov problems are directly connected, hence the link with Levinson-Durbin [Heinig and Rost, 2011].
- For generic optimization problems, eigenvalues are perturbed by deviations from the linear model, which can make the situation even worse.

Be wise, regularize ...

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Regularized Minimal Polynomial Extrapolation

Regularized AMPE. Add a regularization term to AMPE.

- Regularized formulation of problem (AMPE),

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T}\left(U^{T} U+\lambda I\right) c \\
\text { subject to } & \mathbf{1}^{T} c=1 \tag{RMPE}
\end{array}
$$

- Solution given by a linear system of size $k+1$.

$$
\begin{equation*}
c_{\lambda}^{*}=\frac{\left(U^{T} U+\lambda I\right)^{-1} \mathbf{1}}{\mathbf{1}^{T}\left(U^{T} U+\lambda I\right)^{-1} \mathbf{1}} \tag{3}
\end{equation*}
$$

Regularized Minimal Polynomial Extrapolation

RMPE algorithm.

Input: Sequence $\left\{x_{0}, x_{1}, \ldots, x_{k+1}\right\}$, parameter $\lambda>0$
1: Form $U=\left[x_{1}-x_{0}, \ldots, x_{k+1}-x_{k}\right]$
2: Solve the linear system $\left(U^{T} U+\lambda I\right) z=1$
3: Set $c=z /\left(z^{T} \mathbf{1}\right)$
Output: Return $\sum_{i=0}^{k} c_{i} x_{i}$, approximating the optimum x^{*}

Regularized Minimal Polynomial Extrapolation

Regularized AMPE. Define

$$
S(k, \alpha) \triangleq \min _{\left\{q \in \mathbb{R}_{k}[x]: q(1)=1\right\}}\left\{\max _{x \in[0, \sigma]}((1-x) q(x))^{2}+\alpha\|q\|_{2}^{2}\right\},
$$

Proposition [Scieur, d'Aspremont, and Bach, 2016]

Error bounds Let matrices $X=\left[x_{0}, x_{1}, \ldots, x_{k}\right], \tilde{X}=\left[x_{0}, \tilde{x}_{1}, \ldots, \tilde{x}_{k}\right]$ and scalar $\kappa=\left\|(A-I)^{-1}\right\|_{2}$. Suppose \tilde{c}_{λ}^{*} solves problem (RMPE) and assume $A=g^{\prime}\left(x^{*}\right)$ symmetric with $0 \preceq A \preceq \sigma I$ where $\sigma<1$. Let us write the perturbation matrices $P=\tilde{U}^{T} \tilde{U}-U^{T} U$ and $\mathcal{E}=(X-\tilde{X})$. Then

$$
\left\|\tilde{X} \tilde{c}_{\lambda}^{*}-x^{*}\right\|_{2} \leq C(\mathcal{E}, P, \lambda) S\left(k, \lambda /\left\|x_{0}-x^{*}\right\|_{2}^{2}\right)^{\frac{1}{2}}\left\|x_{0}-x^{*}\right\|_{2}
$$

where

$$
C(\mathcal{E}, P, \lambda)=\left(\kappa^{2}+\frac{1}{\lambda}\left(1+\frac{\|P\|_{2}}{\lambda}\right)^{2}\left(\|\mathcal{E}\|_{2}+\kappa \frac{\|P\|_{2}}{2 \sqrt{\lambda}}\right)^{2}\right)^{\frac{1}{2}}
$$

Regularized Minimal Polynomial Extrapolation

Proposition [Scieur et al., 2016]

Asymptotic acceleration Using the gradient method with stepsize in $] 0, \frac{2}{L}[$ on a L-smooth, μ-strongly convex function f with Lipschitz-continuous Hessian of constant M.

$$
\left\|\tilde{X} \tilde{c}_{\lambda}^{*}-x^{*}\right\|_{2} \leq \kappa\left(1+\frac{\left(1+\frac{1}{\beta}\right)^{2}}{4 \beta^{2}}\right)^{1 / 2} \frac{2 \zeta^{k}}{1+\zeta^{2 k}}\left\|x_{0}-x^{*}\right\|
$$

with

$$
\zeta=\frac{1-\sqrt{\mu / L}}{1+\sqrt{\mu / L}}
$$

for $\left\|x_{0}-x^{*}\right\|$ small enough, where $\lambda=\beta\|P\|_{2}$ and $\kappa=\frac{L}{\mu}$ is the condition number of the function $f(x)$.

We (asymptotically) recover the accelerated rate in [Nesterov, 1983].

Regularized Minimal Polynomial Extrapolation

Stochastic optimization. Noisy oracles on iterates (in practice, gradients) $\tilde{x}_{t+1}=g\left(\tilde{x}_{t}\right)+\eta_{t+1}$, where η_{t} is noise term (independent). Equivalent to

$$
\tilde{x}_{t+1}=x^{*}+G\left(\tilde{x}_{t}-x^{*}\right)+\varepsilon_{t+1},
$$

where $\left\|\mathbf{E}\left[\varepsilon_{t}\right]\right\| \leq \nu$ and ε_{t} has bounded variance $\Sigma_{t} \preceq\left(\sigma^{2} / d\right) I$ with

$$
\tau \triangleq \frac{\nu+\sigma}{\left\|x_{0}-x^{*}\right\|} .
$$

Proposition [Scieur, d'Aspremont, and Bach, 2017]

Error bounds The accuracy of AMPE applied to the sequence $\left\{\tilde{x}_{0}, \ldots, \tilde{x}_{k}\right\}$ is bounded by

$$
\frac{\mathrm{E}\left[\left\|\sum_{i=0}^{k} \tilde{c}_{\hat{c}}^{\lambda} \tilde{x}_{i}-x^{*}\right\|\right]}{\left\|x_{0}-x^{*}\right\|} \leq\left(S_{\kappa}(k, \bar{\lambda}) \sqrt{\frac{1}{\kappa^{2}}+\frac{O\left(\tau^{2}(1+\tau)^{2}\right)}{\bar{\lambda}^{3}}}+O\left(\sqrt{\tau^{2}+\frac{\tau^{2}\left(1+\tau^{2}\right)}{\bar{\lambda}}}\right)\right)
$$

Regularized Minimal Polynomial Extrapolation

Stochastic optimization.

- When the noise scale $\tau \rightarrow 0$, if $\bar{\lambda}=\Theta\left(\tau^{s}\right)$ with $\left.s \in\right] 0, \frac{2}{3}[$, we recover the accelerated rate

$$
\mathbf{E}\left[\left\|\sum_{i=0}^{k} \tilde{c}_{i}^{\lambda} \tilde{x}_{i}-x^{*}\right\|\right] \leq \frac{1}{\kappa}\left(\frac{1-\sqrt{\kappa}}{1+\sqrt{\kappa}}\right)^{k}\left\|x_{0}-x^{*}\right\| .
$$

- If $\lambda \rightarrow \infty$, we recover the averaged gradient

$$
\mathbf{E}\left[\left\|\sum_{i=0}^{k} \tilde{c}_{i}^{\lambda} \tilde{x}_{i}-x^{*}\right\|\right] \rightarrow \mathbf{E}\left[\left\|\frac{1}{k+1} \sum_{i=0}^{k} \tilde{x}_{i}-x^{*}\right\|\right]
$$

Outline

- Introduction
- Minimal Polynomial Extrapolation
- Regularized MPE
- Numerical results

Numerical Results

Logistic regression with ℓ_{2} regularizartion, on Madelon Dataset (500 features, 2000 data points), solved using several algorithms. The penalty parameter has been set to 10^{2} in order to have a condition number equal to 1.2×10^{9}.

Numerical Results

$$
-=\text { SAGA } \quad-==\text { SGD } \quad-==\text { SVRG } \quad==\text { Katyusha } \quad \text { AccSAGA }=\text { AccSGD } \quad \text { AccSVRG } \quad \text { AccKat. }
$$

Optimization of quadratic loss (Top) and logistic loss (Bottom) with several algorithms, using the Sid dataset with bad conditioning. The experiments are done in Matlab. Left: Error vs epoch number. Right: Error vs time.

Numerical Results

Convergence acceleration. Training Resnet-28-10 on CIFAR data set. Value reached by the current iterate versus extrapolated one (from the last 15 iterates). Training loss on the left, testing error on the right. Restarting the training periodically at the extrapolated point. Vertical lines mark learning rate decreases.

Conclusion

Postprocessing works.

- Simple postprocessing step.
- Marginal complexity, can be performed in parallel.
- Significant convergence speedup over optimal methods.
- Adaptive. Does not need knowledge of smoothness parameters.

Work in progress. . .

- Extrapolating accelerated methods.
- Constrained problems.
- Better handling of smooth functions.

Open problems

- Regularization. How do we account for the fact that we are estimating the limit of a VAR sequence with a fixed point?
- The VAR matrix A is formed implicitly, but we have some information on its spectrum through smoothness.
- Explicit bounds on the regularized Chebyshev problem,

$$
S(k, \alpha) \triangleq \min _{\left\{q \in \mathbb{R}_{k}[x]: q(1)=1\right\}}\left\{\max _{x \in[0, \sigma]}((1-x) q(x))^{2}+\alpha\|q\|_{2}^{2}\right\}
$$

Preprints on ArXiv, NIPS 2016, 2017.

References

Alexander Craig Aitken. On Bernoulli's numerical solution of algebraic equations. Proceedings of the Royal Society of Edinburgh, 46:289-305, 1927.

C Brezinski. Accélération de la convergence en analyse numérique. Lecture notes in mathematics (ISSN 0075-8434, (584), 1977.
RP Eddy. Extrapolating to the limit of a vector sequence. Information linkage between applied mathematics and industry, pages 387-396, 1979.
M. Hardt. The zen of gradient descent. Mimeo, 2013.

Georg Heinig and Karla Rost. Fast algorithms for Toeplitz and Hankel matrices. Linear Algebra and its Applications, 435(1):1-59, 2011.
M Mešina. Convergence acceleration for the iterative solution of the equations $x=a x+f$. Computer Methods in Applied Mechanics and Engineering, 10(2):165-173, 1977.
Arkadi S Nemirovskiy and Boris T Polyak. Iterative methods for solving linear ill-posed problems under precise information. ENG. CYBER., (4):50-56, 1984.
Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2): 372-376, 1983.
D. Scieur, A. d'Aspremont, and F. Bach. Regularized Nonlinear Acceleration. NIPS, 2016.

Damien Scieur, Alexandre d'Aspremont, and Francis Bach. Nonlinear acceleration of stochastic algorithms. arXiv preprint arXiv:1706.07270, 2017.

Avram Sidi, William F Ford, and David A Smith. Acceleration of convergence of vector sequences. SIAM Journal on Numerical Analysis, 23 (1):178-196, 1986.

David A Smith, William F Ford, and Avram Sidi. Extrapolation methods for vector sequences. SIAM review, 29(2):199-233, 1987.
Evgenij E Tyrtyshnikov. How bad are Hankel matrices? Numerische Mathematik, 67(2):261-269, 1994.
Peter Wynn. On a device for computing the $e_{m}\left(s_{n}\right)$ transformation. Mathematical Tables and Other Aids to Computation, 10(54):91-96, 1956.

