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Introduction

Minimizing finite sums.

minimize
∑n
i=1 fi(xi)

subject to x ∈ C

� Ubiquitous in statistics, machine learning.

� Better computational complexity (SAGA, SVRG, MISO, etc.).

� Today. More robust to nonconvexity issues.
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Introduction

Minimizing finite sums.

� Penalized regression. Given a penalty function g(x) such as `1, `0, SCAD,
solve

minimize
∑n
i=1 z

2
i + λ

∑p
i=1 g(xi)

subject to z = Ax− b

� Empirical Risk Minimization. In the linear case,

minimize
∑n
i=1 `(yi, zi) + λ

∑p
i=1 g(wi)

subject to z = Aw − b

� Multi-Task Learning. Same format, by blocks.

� Resource Allocation. Aka unit commitment problem.

maximize
∑n
i=1 f(xi)

subject to Ax ≤ b
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Introduction

Minimizing finite sums.

minimize
∑n
i=1 fi(xi)

subject to x ∈ C

� Better complexity bounds for stochastic gradient. SAG [Schmidt et al.,
2013], SVRG [Johnson and Zhang, 2013], SDCA [Shalev-Shwartz and Zhang,
2013], SAGA [Defazio et al., 2014].

� Non convexity has a milder impact. Weakly convex penalties for
M -estimators [Loh and Wainwright, 2013, Chen and Gu, 2014].

� Equilibrium in economies where consumers have non-convex preferences.
[Starr, 1969, Guesnerie, 1975].

� Unit commitment problem with non-convex costs. [Bertsekas et al., 1981].
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Introduction

This talk. Focus on problems with separable linear constraints

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

Many results generalize to the nonlinear case,

minimize
∑n
i=1 fi(xi)

subject to
∑n
i=1 gij(xi) ≤ 0, j = 1, . . . ,m

xi ∈ Yi, i = 1, . . . , n,
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Outline

� Shapley-Folkman theorem

� Duality gap bounds

� Stable bounds
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Introduction

Minkowski sum. Given sets X,Y ⊂ Rd, we have

X + Y = {x+ y : x ∈ X, y ∈ Y }

(CGAL User and Reference Manual)

Convex hull. Given subsets Vi ⊂ Rd, we have

Co

(∑
i

Vi

)
=
∑
i

Co(Vi)
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Shapley-Folkman

The `1/2 ball, Minkowsi average of two and ten balls, convex hull.

+ + + + = 5×

Minkowsi average of five first digits (obtained by sampling).
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Shapley-Folkman

Shapley-Folkman Theorem [Starr, 1969]

If Vi ⊂ Rd, i = 1, . . . , n, and

x ∈ Co

(
n∑
i=1

Vi

)
=

n∑
i=1

Co(Vi)

then
x ∈

∑
[1,n]\S

Vi +
∑
S

Co(Vi)

where |S| ≤ d.
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Shapley-Folkman

Proof. Suppose x ∈
∑n
i=1Co (Vi), by Carathéodory’s theorem we have

z =

n∑
i=1

d+1∑
j=1

λijzij

where z ∈ Rd+n, λ ≥ 0, and

z =

(
x
1n

)
, zij =

(
vij
ei

)
, for i = 1, . . . , n and j = 1, . . . , d+ 1,

with ei ∈ Rn is the Euclidean basis. Conic Carathéodory on z means

z =

n∑
i=1

d+1∑
j=1

µijzij

where n+ d nonzero coefficients µij are spread among n sets (cf. constraints),
with at least one nonzero coefficient per set.

This means µij = 1 for at least n− d indices i, for which
∑d+1
j=1 µijzij ∈ Vi.
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Shapley-Folkman

Proof. Write
x ∈

∑
[1,n]\S

Vi +
∑
S

Co(Vi)

where |S| ≤ d, or (
x
1n

)
=

n∑
i=1

d+1∑
j=1

λij

(
vij
ei

)
.

λij

} d

}
n xi ∈ Vixi ∈ Co(Vi)

Number of nonzero λij controls distance to convex hull.
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Shapley-Folkman: consequences

Consequences.

� If the sets Vi ⊂ Rd are uniformly bounded with rad(Vi) ≤ R, then

dH

((∑
i

Vi

)
,Co

(∑
i

Vi

))
≤ R

√
min{n, d}

where rad(V ) = infx∈V supy∈V ‖x− y‖.

� In particular, when d is fixed and n→∞(∑n
i=1 Vi
n

)
→ Co

(∑n
i=1 Vi
n

)
in the Hausdorff metric.
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Shapley-Folkman: consequences

In the limit.

� When n→∞, Lyapunov Theorem [Berliocchi and Lasry, 1973, Ekeland and
Temam, 1999].

� Hilbert, Banach space versions [Cassels, 1975, Puri and Ralescu, 1985,
Schneider and Weil, 2008]. Bound Hausdorff distance with convex hull in
terms of radius.

� Strong law of large numbers for [Artstein and Vitale, 1975].
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Outline

� Shapley-Folkman theorem

� Duality gap bounds

� Stable bounds
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Nonconvex Optimization

Optimization problem. Focus on separable problem with linear constraints

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

(P)

in the variables xi ∈ Rdi with d =
∑n
i=1 di, where fi are lower semicontinuous

(but not necessarily convex), Yi ⊂ dom fi are compact, and A ∈ Rm×d.

Take the dual twice to form a convex relaxation,

minimize
∑n
i=1(fi + 1Yi)

∗∗(xi)
subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi.
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Nonconvex Optimization

Convex envelope.

� Biconjugate f∗∗ of f (aka convex envelope of f): pointwise supremum of all
affine functions majorized by f (see e.g. [Rockafellar, 1970, Th. 12.1] or
[Hiriart-Urruty and Lemaréchal, 1993, Th. X.1.3.5])

� We have epi(f∗∗) = Co(epi(f)), which means that

f∗∗(x) and f(x) match at extreme points x of epi(f∗∗).

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the convex envelope of Card(x) in [−1, 1].
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Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

G ,

{
(x, r0, r) ∈ Rd+1+m :

n∑
i=1

fi(xi) + 1Yi(xi) ≤ r0, Ax− b ≤ r

}
,

and its projection on the last m+ 1 coordinates,

Gr ,
{

(r0, r) ∈ Rm+1 : (x, r0, r) ∈ G
}
,

we can write the dual function of (P) as

Ψ(λ) , inf
{
r0 + λ>r : (r0, r) ∈ G∗∗r

}
,

in the variable λ ∈ Rm, where G∗∗ = Co(G) is the closed convex hull of the
epigraph G. [Lemaréchal and Renaud, 2001, Th. 2.11]: affine constraints means
the dual functions of (P) and (CoP) are equal. The (common) dual of (P)
and (CoP) is then

sup
λ≥0

Ψ(λ) (D)

in the variable λ ∈ Rm.
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Nonconvex Optimization

Epigraph. Define

Fi =
{

((fi + 1Yi)
∗∗(xi), Aixi) : xi ∈ Rdi

}
where Ai ∈ Rm×di is the ith block of A.

� The epigraph G∗∗r can be written as a Minkowski sum of Fi

G∗∗r =

n∑
i=1

Fi + (0,−b) + Rm+1
+

� Lack of convexity. Define

ρ(f) , sup
x∈dom(f)

{f(x)− f∗∗(x)}.
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Bound on duality gap

A priori bound on duality gap of

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

where A ∈ Rm×d.

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi in (P) satisfy
Assumption (. . . ). There is a point x? ∈ Rd at which the primal optimal value
of (CoP) is attained, such that

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

where x̂? is an optimal point of (P) and ρ(f[1]) ≥ ρ(f[2]) ≥ . . . ≥ ρ(f[n]).
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Bound on duality gap

Proof sketch. Pick optimal z? in G∗∗r , closed convex hull of epigraph which is a
Minkowski sum,

G∗∗r =

n∑
i=1

Fi+(0,−b)+Rm+1
+ , where Fi =

{
(f∗∗i (xi), Aixi) : xi ∈ Rdi

}
⊂ Rm+1

� Krein-Milman shows G∗∗r =
∑n
i=1Co (Ext(Fi)) + (0,−b) + Rm+1

+ .

� Fi ⊂ Rm+1 so Shapley-Folkman shows that for any z? ∈ G∗∗r ,

z? ∈
∑

[1,n]\S

Ext(Fi) +
∑
S

Co (Ext(Fi))

for some index set S ⊂ [1, n] with |S| ≤ m+ 1.

� Then, fi(x
?
i ) = f∗∗i (x?i ) when x?i ∈ Ext(Fi), and f(x?i )− f∗∗(x?i ) ≤ ρ(fi)

otherwise.
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Bound on duality gap

Shapley-Folkman.

� A priori bound on duality gap based on tractable quantities.

� Vanishingly small if n→∞, m fixed and ρ is uniformly bounded.

� However, the bound is written in terms of unstable quantities which lack
meaning (dimension, rank, etc.)

Significantly tighten gap bound using stable quantities?
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Outline

� Shapley-Folkman theorem

� Duality gap bounds

� Stable bounds
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Stable bounds on duality gap

kth-nonconvexity measure. [Bi and Tang, 2016]

ρk(f) , sup
xi∈dom(f)

α∈Rd+1
+

{
f

(
d+1∑
i=1

αixi

)
−
d+1∑
i=1

αif(xi) : 1Tα = 1,Card(α) ≤ k

}

which restricts the number of nonzero coefficients in the formulation of ρ(f).

λij

} d
}

n xi ∈ Vixi ∈ Co(Vi)
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Stable bounds on duality gap

Coupling. A priori bound on duality gap of

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

where A ∈ Rm×d.

� Gap bound depends on number of coupling constraints in Ax ≤ b.

� The representation Ax ≤ b is not unique.

Get better bounds using shorter representations of P = {x ∈ Rd : Ax ≤ b}?
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Stable bounds on duality gap

Extended formulation.

Given the linear coupling constraints

P = {x ∈ Rd : Ax ≤ b}

where A ∈ Rm×d. Write it as the projection of another, potentially simpler,
polytope with

P =
{
x ∈ Rd : Bx+ Cu ≤ d, u ∈ Rp

}
where B ∈ Rq×d, C ∈ Rq×p and d ∈ Rq, where q < m.

The extension complexity xc(P) is the minimum number of inequalities of an
extended formulation of the polytope P.
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Stable bounds on duality gap

Extended formulation. Examples.

� The `1-ball B1 =
{
x ∈ Rn : uTx ≤ 1, u ∈ {−1,+1}n

}
has 2n inequalities.

Extended formulation written

B1 =
{
x ∈ Rn : −u ≤ x ≤ u, 1Tu = 1, u ∈ Rn

}
has only 2n inequalities and one equality constraint in dimension 2n.

� Permutahedron P = Co(π({1, 2, . . . , n})) has 2n − 2 facet defining
inequalities.

◦ Extended formulation using O(n2) inequalities in dimension O(n2) using
Birkhoff polytope.

◦ Optimal extended formulation by [Goemans, 2014] has only O(n log n)
variables and constraints.
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Stable bounds on duality gap

Extended formulation. Write S the slack matrix of P, with

Sij , bi − (Avj)i ≥ 0, where P = Co({v1, . . . , vp}).

� [Yannakakis, 1991, Th. 3] shows that

{x ∈ Rd : Ax+ Fy = b, y ≥ 0}

is an extended formulation of P iff S can be factored as S = FV where
F, V are nonnegative matrices.

� Smallest extended formulation of P from lowest rank NMF of S.

� Stable, approximate extended formulation using similar arguments on nested
polytopes [Pashkovich, 2012, Braun et al., 2012, Gillis and Glineur, 2012].

� Caveat: we are counting equality constraints here, so our definition of
extension complexity is different.

We can replace m in gap bound by (modified) extension complexity.
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Stable bounds on duality gap.

Active constraints. [Udell and Boyd, 2016] show that we can replace the
number of contraints m by the number of active contraints m̃.

� Write the optimal set

X? = {M1 × . . .×Mn} ∩ {Ax ≤ b}, where Mi = argmin
xi∈Yi

f∗∗i (xi) + λ?TAxi

� x is an extreme point of X? if and only if x is the only point at intersection of
minimal faces F1, F2 of resp. {M1 × . . .×Mn} and {Ax ≤ b} containing x
[Dubins, 1962, Th. 5.1], [Udell and Boyd, 2016, Lem. 3].

� This means that dimF1 + dimF2 ≤ d with d− m̃ ≤ dimF2, so dimF1 ≤ m̃.

� As faces of Cartesian products are Cartesian products of faces, the sum of
dimensions of the faces of Mi containing xi is smaller than m̃, hence at least
n− m̃ points xi of these faces are extreme points where f∗∗i (xi) = fi(xi).
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Approximate Shapley Folkman

Approximate Carathéodory.

� The gap bound relies on Shapley-Folkman, itself a consequence of
Carathéodory.

� Approximate Carathéodory trades increased sparsity for small approx error.

Approximate Shapley-Folkman.

� In the SF proof, we start with an exact representation using n+m coefficients,
where m� n.

� Can we find an approximate representation using between n and n+m
coefficients?

We need an approximate Carathéodory theorem with high sampling ratio.
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Approximate Shapley Folkman

Theorem [Kerdreux, Colin, and A., 2017]

Approximate Carathéodory with high sampling ratio. Let x =
∑N
j=1 λjVj for

V ∈ Rd×N and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0. Let ε > 0 and write

R = max{Rv, Rλ}, where Rv = maxi ‖λiVi‖ and Rλ = maxi |λi|,

for some norm ‖ · ‖ such that (Rd, ‖ · ‖) is (2, D)-smooth. Then, there exists some
x̂ =

∑
j∈J µjVj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has size

|J | = 1 +N
c(
√
N DR/ε)2

1 + c(
√
N DR/ε)2

for some absolute c > 0, and is such that ‖x− x̂‖ ≤ ε and |
∑
j∈J µj − 1| ≤ ε.

Proof. Martingale arguments for sampling without replacement as in [Serfling,
1974, Bardenet et al., 2015, Schneider, 2016].
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Approximate Shapley Folkman

Approximate Shapley Folkman.

� This approximate Carathéodory yields an approximate Shapley-Folkman result.

� We get better bounds on the gap, for perturbed versions of the problem, with
a much smaller number of terms in the gap bound

m+1∑
i=1

ρ(f[i])

� The quantity R = max{Rv, Rλ} in the Hoeffding bound is very conservative.
We can get a Bennett-Serfling inequality instead [Kerdreux et al., 2017].
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Summary

A priori gap bound on

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

where A ∈ Rm×d.

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

Much better than naive bound, but still very conservative. . .

� Replace ρ(f[i]) by ρk(f[i]).

� Replace m by the number of active contraints m̃ in the optimal extended
formulation of the active constraint polytope.

� Use approximate Carathéodory representation to further reduce m̃.
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Conclusion

A priori bounds on gap.

� Shapley-Folkman yields a priori bounds on duality gap of nonconvex finite sum
minimization problems.

� Good but very conservative, can be significantly tightened using more stable
quantities.

� Unfortunately, quantities involved are hard to bound explicitly.

Shapley-Folkman deserves a bit more limelight in Optimization, ML and
statistics. . .
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