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Introduction

Statistical performance vs. computational complexity.

� Clear empirical link between statistical performance and computational
complexity.

� Quantities describing computational complexity lack statistical meaning.

Today: Two minor enigmas. . .
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Introduction

“Fast solution of `1-norm minimization problems when the solution may be
sparse” by [Donoho and Tsaig, 2008].

Figure 3: Computational Cost of Homotopy. Panel (a) shows the operation count as a fraction
of one least-squares solution on a ⇢-� grid, with n = 1000. Panel (b) shows the number of
iterations as a fraction of d = � ·n. The superimposed dashed curve depicts the curve ⇢W , below
which Homotopy recovers the sparsest solution with high probability.

1. k-step region. When (d, n, k) are such that the k-step property holds, then Homotopy
successfully recovers the sparse solution in k steps, as suggested by Empirical Findings 1
and 2. Otherwise;

2. k-sparse region. When (d, n, k) are such that `1 minimization correctly recovers k-sparse
solutions but Homotopy takes more than k steps, then, with high probability, it takes
no more than cs · d steps, with cs a constant depending on E, V , empirically found to be
⇠ 1.6. Otherwise;

3. Remainder. With high probability, Homotopy does not recover the sparsest solution,
returning a solution to (P1) in cf ·d steps, with cf a constant depending on E, V , empirically
found to be ⇠ 4.85.

We note that the so-called “constants” cs, cf depend weakly on � and n.
A graphical depiction of this division of the space of admissible (d, n, k) is given in panel

(b) of Figure 3. It shows the number of iterations Homotopy performed for various (d, n, k)
configurations, as a shaded attribute on a grid indexed by � and ⇢. Inspection of this plot
reveals that Homotopy performs at most ⇠ 1.6 · d iterations, regardless of the underlying
solution sparsity. In particular, in the region below the curve ⇢W , where, with high probablity,
Homotopy recovers the sparsest solution, it does so in less than d steps.

More extensive evidence is given in Table 2, summarizing the results of a comprehensive
study. We considered four matrix ensembles E, each coupled with three nonzero ensembles
V . For a problem instance drawn from a S(E,V; d, n, k), we recorded the number of iterations
required to reach a solution. We repeated this at many di↵erent (d, n, k) configurations, gen-
erating 100 independent realizations for each (d, n, k), and computing the average number of
iterations observed at each instance. Table 2 displays the estimated constants cs, cf for di↵erent
combinations of matrix ensemble and coe�cient ensemble. Thus, the results in Table 2 read,
e.g., ‘Applied to a problem instance drawn from S(USE,Uniform; d, n, k), Homotopy takes,
with high probability, no more than 1.69 · d iterations to obtain the minimum `1 solution’.

15

First enigma: Phase transition for computation and recovery match. . .
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Introduction

“Templates for convex cone problems with applications to sparse signal recovery.”
(TFOCS) by [Becker, Candès, and Grant, 2011b].
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Figure 6: Comparing first order methods applied to a smoothed Dantzig selector model. Left: comparing
all variants using a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing
various restart strategies using the AT method.

algorithms head-to-head applied to the same model.
For this comparison, we constructed a smoothed Dantzig selector model similar to the one

employed in §3.4 above. The model used a partial DCT measurement matrix of size 512⇥ 2048, a
signal with 128 nonzero values, and an additive noise level of 30 dB SNR. The smoothing parameter
was chosen to be µ = 0.25, and we then employed the techniques of Appendix B to perturb the
model and obtain a known exact solution. This reference solution had 341 nonzeros, a minimum
magnitude of 0.002 and a maximum amplitude 8.9. The smoothed model was then solved using
the 6 first-order variants discussed here, using both a fixed step size of t = 1/L = µ/kAk2 and our
proposed backtracking strategy, as well as a variety of restart intervals.

The results of our tests are summarized by two plots in Figure 6. The cost of the linear operator
dominates, so the horizontal axes give the number of calls to either A or A⇤ taken by the algorithm.
The vertical axes give the relative error kxk�x?

µk/kx?
µk. Because this is a sparse recovery problem,

we are also interested in determining when the algorithms find the correct support; that is, when
they correctly identify the locations of the 341 nonzero entries. Therefore, the lines in each plot
are thicker where the computed support is correct, and thinner when it is not.

The left-hand plot compares all variants using both fixed step sizes and backtracking line search,
but with no restart. Not surprisingly, the standard gradient method performs significantly worse
than all of the optimal first-order methods. In the fixed step case, AT performs the best by a
small margin; but the result is moot, as backtracking shows a significant performance advantage.
For example, using the AT variant with a fixed step size requires more than 3000 calls to A or
A⇤ to reach an error of 10�4; with backtracking, it takes fewer than 2000. With backtracking, the
algorithms exhibit very similar performance, with AT and TS exhibiting far less oscillation than
the others. All of the methods except for GRA correctly identify the support (a di�cult task due
to the high dynamic range) within 1000 linear operations.

The right-hand plot shows the performance of AT if we employ the restart method described in
§5.6 for several choices of the restart interval. We observe significant improvements in performance,
revealing evidence of local strong convexity. A restart interval of 200 iterations yields the best re-
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Second enigma: Restarting yields linear convergence. . .
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Outline

Today.

� Sharpness

� Optimal restart schemes, adaptation

� Compressed Sensing Performance

� Numerical results
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Sharpness

Consider
minimize f(x)
subject to x ∈ Q

where f(x) is a convex function, Q ⊂ Rn.

� Assume ∇f is Hölder continuous,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖s−1, for every x, y ∈ Rn,

� Assume sharpness, i.e.

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K,

where f∗ is the minimum of f , K ⊂ Rn is a compact set, d(x,X∗) the distance
from x to the set X∗ ⊂ K of minimizers of f , and r ≥ 1, µ > 0 are constants.
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Sharpness, Restart

Strong convexity is a particular case of sharpness.

µd(x,X∗)2 ≤ f(x)− f∗

If f is also smooth, an optimal algorithm (ignoring strong convexity), will
produce a point x satisfying

f(x)− f∗ ≤ cL

t2
d(x0, X

∗)2,

after t iterations.

� Restarting the algorithm, we thus get

f(xk+1)− f∗ ≤
cL

µt2k
(f(xk)− f∗), k = 1, . . . , N

at each outer iteration, after tk inner iterations.

� Restart yields linear convergence, without explicitly modifying the algorithm.
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Sharpness

Smoothness is classical [Nesterov, 1983, 2005], sharpness less so. . .

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

� Real analytic functions all satisfy this locally, a result known as  Lojasiewicz’s
inequality [Lojasiewicz, 1963].

� Generalizes to a much wider class of non-smooth functions [Lojasiewicz, 1993,
Bolte et al., 2007]

� Conditions of this form are also known as sharp minimum, error bound, etc.
[Polyak, 1979, Burke and Ferris, 1993, Burke and Deng, 2002].
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Sharpness & Smoothness

� Gradient ∇f Hölder continuous ensures

f(x)− f∗ ≤ L

s
d(x,X∗)s,

an upper bound on suboptimality.

� If in addition f sharp on a set K with parameters (r, µ), we have

sµ

rL
≤ d(x,X∗)s−r

hence s ≤ r.

In the following, we write

κ , L
2
s/µ

2
r and τ , 1− s

r

If r = s = 2, κ matches the classical condition number of the function.
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Sharpness & Complexity

� Restart schemes were studied for strongly or uniformly convex functions
[Nemirovskii and Nesterov, 1985, Nesterov, 2007, Iouditski and Nesterov,
2014, Lin and Xiao, 2014]

� In particular, Nemirovskii and Nesterov [1985] link sharpness with (optimal)
faster convergence rates using restart schemes.

� Weaker versions of this strict minimum condition used more recently in restart
schemes by [Renegar, 2014, Freund and Lu, 2015].

� Several heuristics [O’Donoghue and Candes, 2015, Su et al., 2014, Giselsson
and Boyd, 2014] studied adaptive restart schemes to speed up convergence.

� The robustness of restart schemes was also studied by Fercoq and Qu [2016] in
the strongly convex case.

� Sharpness used to prove linear converge matrix games by Gilpin et al. [2012].

Alex d’Aspremont Newton Institute, January 2018. 10/27



Restart schemes

Algorithm 1 Scheduled restarts for smooth convex minimisation (RESTART)

Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk)

end for
Output : x̂ := xR

Here, the number of inner iterations tk satisfies

tk = Ceαk, k = 1, . . . , R.

for some C > 0 and α ≥ 0 and will ensure

f(xk)− f∗ ≤ νe−γk.
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Restart schemes

Proposition [Roulet and A., 2017]

Restart. Let f be a smooth convex function with parameters (2, L), sharp with
parameters (r, µ) on a set K. Restart with iteration schedule tk = C∗κ,τe

τk, for

k = 1, . . . , R, where C∗κ,τ , e
1−τ(cκ)

1
2(f(x0)− f∗)−

τ
2 , with c = 4e2/e here.

The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ e−2e−1(cκ)−
1
2N(f(x0)− f∗) = O

(
exp(−κ−1

2N)
)
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2(cκ)−

1
2N + 1

)2
τ

= O
(
N−

2
τ

)
, when τ > 0,

where N =
∑R
k=1 tk is the total number of iterations.
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Adaptation

� The sharpness constant µ and exponent r in

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

are of course never observed.

� Can we make restart schemes adaptive? Otherwise, sharpness is useless. . .

� Solves robustness problem for accelerated methods on strongly convex
functions.
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Adaptation

Proposition [Roulet and A., 2017]

Adaptation. Assume N ≥ 2C∗κ,τ , and if 1
N > τ > 0, C∗κ,τ > 1.

If τ = 0, there exists i ∈ [1, . . . , blog2Nc] such that scheme Si,0 achieves a
precision given by

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−1

2N
)
(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , blog2Nc] and j ∈ [1, . . . , dlog2Ne] such that
scheme Si,j achieves a precision given by

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)−

1
2(f(x0)− f∗)

τ
2(N − 1)/4 + 1

)2
τ

.

Overall, running the logarithmic grid search has a complexity (log2N)2 times
higher than running N iterations using the optimal (oracle) scheme.

Alex d’Aspremont Newton Institute, January 2018. 14/27



Hölder smooth case

The generic Hölder smooth case s 6= 2 is harder.

� When f is smooth with parameters (s, L) and s 6= 2, the restart scheme is
more complex.

� The universal fast gradient method in [Nesterov, 2015], outputs after t
iterations a point x , U(x0, ε, t), such that

f(x)− f∗ ≤ ε

2
+

(
cL

2
sd(x0, X

∗)2

ε
2
st

2ρ
s

)
ε

2
,

where c is a constant (c = 8) and ρ , 3s
2 − 1 is the optimal rate of

convergence for s-smooth functions.

� Contrary to the case s = 2 above, we need to schedule both the target
accuracy εk used by the algorithm and the number of iterations tk.

� We lose adaptivity when s 6= 2.
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Outline

� Sharpness

� Optimal restart schemes, adaptation

� Compressed Sensing Performance

� Numerical results
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Compressed Sensing

Sparse Recovery. Given A ∈ Rn×p and observations b = Ax∗ on x∗ ∈ Rp, solve

minimize ‖x‖1
subject to Ax = b

(`1 recovery)

in the variable x ∈ Rp.

Definition [Cohen et al., 2009]

Nullspace Property. The matrix A satisfies the Null Space Property (NSP) on
support S ⊂ [1, p] with constant α ≥ 1 if for any z ∈ Null(A) \ {0},

α‖zS‖1 < ‖zSc‖1. (NSP)

The matrix A satisfies the Null Space Property at order s with constant α ≥ 1 if
it satisfies it on every support S of cardinality at most s.
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NSP & Shaprness

Sharpness. Sharpness for `1-recovery of a sparse signals x∗ means

‖x‖1 − ‖x∗‖1 > γ‖x− x∗‖1 (Sharp)

for any x 6= x∗ such that Ax = b, and some 0 ≤ γ < 1.

Proposition [Roulet, Boumal, and A., 2017]

NSP & Sharpness. Given a coding matrix A ∈ Rn×p satisfying (NSP) at order
s with constant α ≥ 1, if the original signal x∗ is s-sparse, then for any x ∈ Rp
satisfying Ax = b, x 6= x∗, we have

‖x‖1 − ‖x∗‖1 >
α− 1

α+ 1
‖x− x∗‖1.

This implies signal recovery, i.e. optimality of x∗ for (`1 recovery), and the
sharpness bound (Sharp) with γ = (α− 1)/(α+ 1).
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Computational Complexity

Restart scheme.

Restart Scheme (Restart)

Input: y0 ∈ Rp, gap ε0 ≥ ‖y0‖1 − ‖x̂‖1, decreasing factor ρ, restart clock t
For k = 1 . . . ,K compute

εk = ρεk−1, yk = A(yk−1, εk, t) (NESTA) (Restart)

Output: A point ŷ = yK approximately solving (`1 recovery).

Restart NESTA by [Becker et al., 2011a] with geometrically increasing precision
targets.
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Computational Complexity

Proposition [Roulet, Boumal, and A., 2017]

Complexity. Given a Gaussian design matrix A ∈ Rn×p and a signal x∗ with
sparsity s < n/(c2 log p), the optimal (Restart) scheme outputs a point ŷ such
that

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(
−
(
1− c

√
s log p

n

)
e

2
√
p
N

)
ε0,

with high probability, where c > 0 is a universal constant and N is the total
number of iterations.

� The iteration complexity of solving the (`1 recovery) problem is controlled by
the oversampling ratio n/s.

� Directly generalizes to other decomposable norms.

� Similar result involving Renegar’s condition number and cone restricted
eigenvalues.
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Numerical results

Sample `1-recovery problems. Solve

minimize ‖x‖1
subject to Ax = b

using NESTA and restart scheme.

� Generate random design matrix A ∈ Rn×p with i.i.d. Gaussian coefficients.

� Normalize A so that AAT = I (to fit NESTA’s format)

� Generate observations b = Ax∗ where x∗ ∈ Rp is an s-sparse vector whose
nonzero coefficients are all ones.
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Numerical results
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Best restarted NESTA (solid red line), overall cost of the adaptive restart
scheme (dashed red line) versus plain NESTA implementation with low accuracy
ε = 10−1 (dotted black line), and higher accuracy ε = 10−3 (dash-dotted
black line). Total budget of 500 iterations.
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Numerical results
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Best restarted NESTA (solid red line) and overall cost of the practical restart
schemes (dashed red line) versus NESTA with 5 continuation/restart steps
(dotted blue line) for a total budget of 500 iterations.

Crosses at restart occurrences. Left: n = 200. Right : n = 300.
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Numerical results
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Left: Constant sparsity s = 20. Right: constant number of samples n = 200.
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Numerical results

Number of samples n 100 200 400
Time in seconds

for f(xt)− f∗ < 10−2
5.07 · 10−2 3.07 · 10−2 1.66 · 10−2

Time to achieve ε = 10−2 by the best restart scheme for increasing number of
samples n

More data less work (ignoring cost of adaptation).
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Conclusion

� Sharpness holds generically.

� Restarting then accelerates convergence, cost of adaptation is marginal.

� Shows better conditioned recovery problems are faster to solve.

Open problems.

� Adaptation in generic Hölder gradient case.

� Optimal algorithm for sharp problems without restart.

� Local adaptation to sharpness.
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