Sharpness, Restart and Compressed Sensing Performance.

Alexandre d'Aspremont, CNRS & D.I., Ecole normale supérieure.

With Vincent Roulet (U. Washington) and Nicolas Boumal (Princeton U.). Support from ERC SIPA. Statistical performance vs. computational complexity.

- Clear empirical link between statistical performance and computational complexity.
- Quantities describing computational complexity lack statistical meaning.

Today: Two minor enigmas. . .

"Fast solution of ℓ_1 -norm minimization problems when the solution may be sparse" by [Donoho and Tsaig, 2008].

Figure 3: Computational Cost of HOMOTOPY. Panel (a) shows the operation count as a fraction of one least-squares solution on a ρ - δ grid, with n = 1000. Panel (b) shows the number of iterations as a fraction of $d = \delta \cdot n$. The superimposed dashed curve depicts the curve ρ_W , below which HOMOTOPY recovers the sparsest solution with high probability.

First enigma: Phase transition for computation and recovery match...

Alex d'Aspremont

"Templates for convex cone problems with applications to sparse signal recovery." (TFOCS) by [Becker, Candès, and Grant, 2011b].

Figure 6: Comparing first order methods applied to a smoothed Dantzig selector model. Left: comparing all variants using a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing various restart strategies using the AT method.

Second enigma: Restarting yields linear convergence...

Alex d'Aspremont

Outline

Today.

Sharpness

- Optimal restart schemes, adaptation
- Compressed Sensing Performance
- Numerical results

Sharpness

Consider

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in Q \end{array}$

where f(x) is a **convex** function, $Q \subset \mathbb{R}^n$.

Assume ∇f is Hölder continuous,

$$\|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\|^{s-1}, \quad \text{for every } x, y \in \mathbb{R}^n,$$

Assume **sharpness**, i.e.

$$\mu d(x, X^*)^r \le f(x) - f^*$$
, for every $x \in K$,

where f^* is the minimum of f, $K \subset \mathbb{R}^n$ is a compact set, $d(x, X^*)$ the distance from x to the set $X^* \subset K$ of minimizers of f, and $r \ge 1$, $\mu > 0$ are constants.

Sharpness, Restart

Strong convexity is a particular case of sharpness.

$$\mu d(x, X^*)^2 \le f(x) - f^*$$

If f is also **smooth**, an optimal algorithm (ignoring strong convexity), will produce a point x satisfying

$$f(x) - f^* \le \frac{cL}{t^2} d(x_0, X^*)^2,$$

after t iterations.

Restarting the algorithm, we thus get

$$f(x_{k+1}) - f^* \le \frac{cL}{\mu t_k^2} (f(x_k) - f^*), \quad k = 1, \dots, N$$

at each outer iteration, after t_k inner iterations.

Restart yields **linear convergence**, without explicitly modifying the algorithm.

Sharpness

Smoothness is classical [Nesterov, 1983, 2005], sharpness less so. . .

$$\mu d(x, X^*)^r \leq f(x) - f^*$$
, for every $x \in K$.

- Real analytic functions all satisfy this locally, a result known as Łojasiewicz's inequality [Lojasiewicz, 1963].
- Generalizes to a much wider class of non-smooth functions [Lojasiewicz, 1993, Bolte et al., 2007]
- Conditions of this form are also known as sharp minimum, error bound, etc. [Polyak, 1979, Burke and Ferris, 1993, Burke and Deng, 2002].

The functions |x|, x^2 and $\exp(-1/x^2)$.

Sharpness & Smoothness

• Gradient ∇f Hölder continuous ensures

$$f(x) - f^* \le \frac{L}{s} d(x, X^*)^s,$$

an **upper bound** on suboptimality.

If in addition f sharp on a set K with parameters (r, μ) , we have

$$\frac{s\mu}{rL} \le d(x, X^*)^{s-r}$$

hence $s \leq r$.

In the following, we write

$$\kappa riangleq L^{rac{2}{s}}/\mu^{rac{2}{r}}$$
 and $au riangleq 1-rac{s}{r}$

If r = s = 2, κ matches the classical condition number of the function.

Alex d'Aspremont

Newton Institute, January 2018. 9/27

Sharpness & Complexity

- Restart schemes were studied for strongly or uniformly convex functions [Nemirovskii and Nesterov, 1985, Nesterov, 2007, louditski and Nesterov, 2014, Lin and Xiao, 2014]
- In particular, Nemirovskii and Nesterov [1985] link sharpness with (optimal) faster convergence rates using restart schemes.
- Weaker versions of this strict minimum condition used more recently in restart schemes by [Renegar, 2014, Freund and Lu, 2015].
- Several heuristics [O'Donoghue and Candes, 2015, Su et al., 2014, Giselsson and Boyd, 2014] studied adaptive restart schemes to speed up convergence.
- The robustness of restart schemes was also studied by Fercoq and Qu [2016] in the strongly convex case.
- Sharpness used to prove linear converge matrix games by Gilpin et al. [2012].

Restart schemes

Algorithm 1 Scheduled restarts for smooth convex minimisation (RESTART)

Inputs : $x_0 \in \mathbb{R}^n$ and a sequence t_k for $k = 1, \ldots, R$. for $k = 1, \ldots, R$ do

$$x_k := \mathcal{A}(x_{k-1}, t_k)$$

end for Output : $\hat{x} := x_R$

Here, the number of inner iterations t_k satisfies

$$t_k = Ce^{\alpha k}, \quad k = 1, \dots, R.$$

for some C>0 and $\alpha\geq 0$ and will ensure

$$f(x_k) - f^* \le \nu e^{-\gamma k}.$$

Proposition [Roulet and A., 2017]

Restart. Let f be a smooth convex function with parameters (2, L), sharp with parameters (r, μ) on a set K. Restart with iteration schedule $t_k = C_{\kappa,\tau}^* e^{\tau k}$, for $k = 1, \ldots, R$, where $C_{\kappa,\tau}^* \triangleq e^{1-\tau} (c\kappa)^{\frac{1}{2}} (f(x_0) - f^*)^{-\frac{\tau}{2}}$, with $c = 4e^{2/e}$ here. The precision reached at the last point \hat{x} is given by,

$$f(\hat{x}) - f^* \le e^{-2e^{-1}(c\kappa)^{-\frac{1}{2}N}} (f(x_0) - f^*) = O\left(\exp(-\kappa^{-\frac{1}{2}N})\right), \text{ when } \tau = 0,$$

while,

$$f(\hat{x}) - f^* \leq \frac{f(x_0) - f^*}{\left(\tau e^{-1}(f(x_0) - f^*)^{\frac{\tau}{2}}(c\kappa)^{-\frac{1}{2}}N + 1\right)^{\frac{2}{\tau}}} = O\left(N^{-\frac{2}{\tau}}\right), \quad \text{when } \tau > 0,$$

where $N = \sum_{k=1}^{R} t_k$ is the total number of iterations.

 \blacksquare The sharpness constant μ and exponent r in

$$\mu d(x, X^*)^r \leq f(x) - f^*$$
, for every $x \in K$.

are of course never observed.

- Can we make restart schemes adaptive? Otherwise, sharpness is useless...
- Solves robustness problem for accelerated methods on strongly convex functions.

Proposition [Roulet and A., 2017]

Adaptation. Assume $N \ge 2C_{\kappa,\tau}^*$, and if $\frac{1}{N} > \tau > 0$, $C_{\kappa,\tau}^* > 1$. If $\tau = 0$, there exists $i \in [1, \ldots, \lfloor \log_2 N \rfloor]$ such that scheme $S_{i,0}$ achieves a precision given by

$$f(\hat{x}) - f^* \le \exp\left(-e^{-1}(c\kappa)^{-\frac{1}{2}}N\right)(f(x_0) - f^*).$$

If $\tau > 0$, there exist $i \in [1, ..., \lfloor \log_2 N \rfloor]$ and $j \in [1, ..., \lceil \log_2 N \rceil]$ such that scheme $S_{i,j}$ achieves a precision given by

$$f(\hat{x}) - f^* \le \frac{f(x_0) - f^*}{\left(\tau e^{-1}(c\kappa)^{-\frac{1}{2}}(f(x_0) - f^*)^{\frac{\tau}{2}}(N-1)/4 + 1\right)^{\frac{2}{\tau}}}$$

Overall, running the logarithmic grid search has a complexity $(\log_2 N)^2$ times higher than running N iterations using the optimal (oracle) scheme.

Alex d'Aspremont

Newton Institute, January 2018. 14/27

Hölder smooth case

The generic Hölder smooth case $s \neq 2$ is harder.

- When f is smooth with parameters (s, L) and $s \neq 2$, the restart scheme is more complex.
- The universal fast gradient method in [Nesterov, 2015], outputs after t iterations a point $x \triangleq \mathcal{U}(x_0, \epsilon, t)$, such that

$$f(x) - f^* \le \frac{\epsilon}{2} + \left(\frac{cL^{\frac{2}{s}}d(x_0, X^*)^2}{\epsilon^{\frac{2}{s}}t^{\frac{2\rho}{s}}}\right)\frac{\epsilon}{2},$$

where c is a constant (c = 8) and $\rho \triangleq \frac{3s}{2} - 1$ is the optimal rate of convergence for s-smooth functions.

- Contrary to the case s = 2 above, we need to schedule *both* the target accuracy ϵ_k used by the algorithm *and* the number of iterations t_k .
- We lose adaptivity when $s \neq 2$.

- Sharpness
- Optimal restart schemes, adaptation
- Compressed Sensing Performance
- Numerical results

Compressed Sensing

Sparse Recovery. Given $A \in \mathbb{R}^{n \times p}$ and observations $b = Ax^*$ on $x^* \in \mathbb{R}^p$, solve

minimize $||x||_1$ subject to Ax = b (ℓ_1 recovery)

in the variable $x \in \mathbb{R}^p$.

Definition [Cohen et al., 2009]

Nullspace Property. The matrix A satisfies the Null Space Property (NSP) on support $S \subset [1, p]$ with constant $\alpha \ge 1$ if for any $z \in Null(A) \setminus \{0\}$,

$$\alpha \|z_S\|_1 < \|z_{S^c}\|_1. \tag{NSP}$$

The matrix A satisfies the Null Space Property at order s with constant $\alpha \ge 1$ if it satisfies it on every support S of cardinality at most s.

NSP & Shaprness

Sharpness. Sharpness for ℓ_1 -recovery of a sparse signals x^* means

$$\|x\|_1 - \|x^*\|_1 > \gamma \|x - x^*\|_1$$
 (Sharp)

for any $x \neq x^*$ such that Ax = b, and some $0 \leq \gamma < 1$.

Proposition [Roulet, Boumal, and A., 2017]

NSP & Sharpness. Given a coding matrix $A \in \mathbb{R}^{n \times p}$ satisfying (NSP) at order s with constant $\alpha \ge 1$, if the original signal x^* is s-sparse, then for any $x \in \mathbb{R}^p$ satisfying Ax = b, $x \ne x^*$, we have

$$||x||_1 - ||x^*||_1 > \frac{\alpha - 1}{\alpha + 1} ||x - x^*||_1.$$

This implies signal recovery, i.e. optimality of x^* for $(\ell_1 \text{ recovery})$, and the sharpness bound (Sharp) with $\gamma = (\alpha - 1)/(\alpha + 1)$.

Alex d'Aspremont

Newton Institute, January 2018. 18/27

Restart scheme.

Restart Scheme (Restart)

Input: $y_0 \in \mathbb{R}^p$, gap $\epsilon_0 \ge ||y_0||_1 - ||\hat{x}||_1$, decreasing factor ρ , restart clock tFor $k = 1 \dots, K$ compute

$$\epsilon_k = \rho \epsilon_{k-1}, \qquad y_k = \mathcal{A}(y_{k-1}, \epsilon_k, t)$$
 (NESTA) (Restart)

Output: A point $\hat{y} = y_K$ approximately solving (ℓ_1 recovery).

Restart NESTA by [Becker et al., 2011a] with geometrically increasing precision targets.

Alex d'Aspremont

Proposition [Roulet, Boumal, and A., 2017]

Complexity. Given a Gaussian design matrix $A \in \mathbb{R}^{n \times p}$ and a signal x^* with sparsity $s < n/(c^2 \log p)$, the optimal (Restart) scheme outputs a point \hat{y} such that

$$\|\hat{y}\|_1 - \|x^*\|_1 \le \exp\left(-\left(1 - c\sqrt{\frac{s\log p}{n}}\right)\frac{e}{2\sqrt{p}}N\right)\epsilon_0$$

with high probability, where c > 0 is a universal constant and N is the total number of iterations.

- The iteration complexity of solving the (ℓ_1 recovery) problem is controlled by the oversampling ratio n/s.
- Directly generalizes to other decomposable norms.
- Similar result involving Renegar's condition number and cone restricted eigenvalues.

- Sharpness
- Optimal restart schemes, adaptation
- Compressed Sensing Performance
- Numerical results

Sample ℓ_1 -recovery problems. Solve

 $\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b \end{array}$

using NESTA and restart scheme.

- Generate random design matrix $A \in \mathbb{R}^{n \times p}$ with i.i.d. Gaussian coefficients.
- Normalize A so that $AA^T = \mathbf{I}$ (to fit NESTA's format)
- Generate observations $b = Ax^*$ where $x^* \in \mathbb{R}^p$ is an *s*-sparse vector whose nonzero coefficients are all ones.

Numerical results

Best restarted NESTA (solid red line), overall cost of the adaptive restart scheme (dashed red line) versus plain NESTA implementation with low accuracy $\epsilon = 10^{-1}$ (dotted black line), and higher accuracy $\epsilon = 10^{-3}$ (dash-dotted black line). Total budget of 500 iterations.

Numerical results

Best restarted NESTA (solid red line) and overall cost of the practical restart schemes (dashed red line) versus NESTA with 5 continuation/restart steps (dotted blue line) for a total budget of 500 iterations.

Crosses at restart occurrences. Left: n = 200. Right : n = 300.

Numerical results

Best restart scheme found by grid search for increasing values of the oversampling ratio $\tau=n/s.$

Left: Constant sparsity s = 20. Right: constant number of samples n = 200.

Number of samples n	100	200	400
Time in seconds for $f(x_t) - f^* < 10^{-2}$	$5.07 \cdot 10^{-2}$	$3.07 \cdot 10^{-2}$	$1.66 \cdot 10^{-2}$

Time to achieve $\epsilon = 10^{-2}$ by the best restart scheme for increasing number of samples n

More data less work (ignoring cost of adaptation).

Alex d'Aspremont

Conclusion

Sharpness holds generically.

- Restarting then accelerates convergence, cost of adaptation is marginal.
- Shows better conditioned recovery problems are faster to solve.

Open problems.

- Adaptation in generic Hölder gradient case.
- Optimal algorithm for sharp problems without restart.
- Local adaptation to sharpness.

References

- Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. Nesta: a fast and accurate first-order method for sparse recovery. *SIAM Journal on Imaging Sciences*, 4(1):1–39, 2011a.
- Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates for convex cone problems with applications to sparse signal recovery. *Mathematical Programming Computation*, 3(3):165–218, 2011b.
- Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. *SIAM Journal on Optimization*, 17(4):1205–1223, 2007.

James Burke and Sien Deng. Weak sharp minima revisited part i: basic theory. Control and Cybernetics, 31:439-469, 2002.

- JV Burke and Michael C Ferris. Weak sharp minima in mathematical programming. *SIAM Journal on Control and Optimization*, 31(5): 1340–1359, 1993.
- A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. Journal of the AMS, 22(1):211-231, 2009.
- David L Donoho and Yaakov Tsaig. Fast solution of ℓ_1 -norm minimization problems when the solution may be sparse. *Information Theory*, *IEEE Transactions on*, 54(11):4789–4812, 2008.
- Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong convexity estimate. *arXiv preprint arXiv:1609.07358*, 2016.
- Robert M Freund and Haihao Lu. New computational guarantees for solving convex optimization problems with first order methods, via a function growth condition measure. *arXiv preprint arXiv:1511.02974*, 2015.
- Andrew Gilpin, Javier Pena, and Tuomas Sandholm. First-order algorithm with $O(\log 1/\epsilon)$ convergence for ϵ -equilibrium in two-person zero-sum games. *Mathematical programming*, 133(1-2):279–298, 2012.
- Pontus Giselsson and Stephen Boyd. Monotonicity and restart in fast gradient methods. In *53rd IEEE Conference on Decision and Control*, pages 5058–5063. IEEE, 2014.
- Anatoli louditski and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly convex functions. *arXiv preprint arXiv:1401.1792*, 2014.
- Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization. In *ICML*, pages 73–81, 2014.

Stanislas Lojasiewicz. Sur la géométrie semi-et sous-analytique. Annales de l'institut Fourier, 43(5):1575–1595, 1993.

Stanislaw Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. *Les équations aux dérivées partielles*, pages 87–89, 1963.

- AS Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Mathematics Doklady, 27(2): 372–376, 1983.
- Y. Nesterov. Smooth minimization of non-smooth functions. *Mathematical Programming*, 103(1):127–152, 2005.
- Y. Nesterov. Gradient methods for minimizing composite objective function. CORE DP2007/96, 2007.
- Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical Programming, 152(1-2):381-404, 2015.
- Brendan O'Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. *Foundations of computational mathematics*, 15(3):715–732, 2015.
- BT Polyak. Sharp minima institute of control sciences lecture notes, moscow, ussr, 1979. In *IIASA workshop on generalized Lagrangians and their applications, IIASA, Laxenburg, Austria*, 1979.

James Renegar. Efficient first-order methods for linear programming and semidefinite programming. *arXiv preprint arXiv:1409.5832*, 2014. Vincent Roulet and Alexandre d'Aspremont. Sharpness, restart and acceleration. *ArXiv preprint arXiv:1702.03828*, 2017.

- Vincent Roulet, Nicolas Boumal, and Alexandre d'Aspremont. Computational complexity versus statistical performance on sparse recovery problems. *arXiv preprint arXiv:1506.03295*, 2017.
- Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *Advances in Neural Information Processing Systems*, pages 2510–2518, 2014.