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Introduction

Statistical performance vs. computational complexity.

m Clear empirical link between statistical performance and computational
complexity.

m Quantities describing computational complexity lack statistical meaning.

Today: Two minor enigmas. . .
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Introduction

“Fast solution of £1-norm minimization problems when the solution may be
sparse” by [Donoho and Tsaig, 2008].
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Figure 3: Computational Cost of HOMOTOPY. Panel (a) shows the operation count as a fraction
of one least-squares solution on a p-0 grid, with n = 1000. Panel (b) shows the number of
iterations as a fraction of d = § -n. The superimposed dashed curve depicts the curve py, below
which HOMOTOPY recovers the sparsest solution with high probability.

First enigma: Phase transition for computation and recovery match. . .
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Introduction

“Templates for convex cone problems with applications to sparse signal recovery.”
(TFOCS) by [Becker, Candes, and Grant, 2011b].

; All variants, fixed and backtracking steps, no restart ; AT method, various restart strategies
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Figure 6: Comparing first order methods applied to a smoothed Dantzig selector model. Left: comparing
all variants using a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing
various restart strategies using the AT method.

Second enigma: Restarting yields linear convergence. . .
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Outline

Today.

= Sharpness
m Optimal restart schemes, adaptation
m Compressed Sensing Performance

m Numerical results
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Sharpness

Consider
minimize  f(x)

subject to x € ()

where f(x) is a convex function, ) C R™.

m Assume V f is Holder continuous,

IVf(2) = Vil < Lz —y[|*, for every 2,y € R,

m Assume sharpness, i.e.
pd(z, X*)" < f(x) — f*, forevery x € K,

where f* is the minimum of f, K C R™ is a compact set, d(x, X*) the distance
from x to the set X* C K of minimizers of f, and » > 1, i > 0 are constants.
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Sharpness, Restart

Strong convexity is a particular case of sharpness.

pd(z, X*)* < f(2) - f*

If f is also smooth, an optimal algorithm (ignoring strong convexity), will
produce a point z satisfying

fla) — f* < Sd(ao, XV

after t iterations.

m Restarting the algorithm, we thus get

Flanar) — f* < MTL (Flar) = f), k=1,...,N

at each outer iteration, after tx inner iterations.

m Restart yields linear convergence, without explicitly modifying the algorithm.
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Sharpness

Smoothness is classical [Nesterov, 1983, 2005], sharpness less so. . .

pd(x, X*)" < f(x) — f*, forevery x € K.

m Real analytic functions all satisfy this locally, a result known as tojasiewicz’s
inequality [Lojasiewicz, 1963].

m Generalizes to a much wider class of non-smooth functions [Lojasiewicz, 1993,
Bolte et al., 2007]

m Conditions of this form are also known as sharp minimum, error bound, etc.
[Polyak, 1979, Burke and Ferris, 1993, Burke and Deng, 2002].
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Sharpness & Smoothness

m Gradient V f Holder continuous ensures

L

f(:l?) R f* < ;d(an*)sv

an upper bound on suboptimality.

= If in addition f sharp on a set K with parameters (r, 1), we have

S oy s—
L < d X S—T

hence s < r.

In the following, we write

/iéL%/,u% and r2q1-2
r

If r = s = 2, kK matches the classical condition number of the function.
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Sharpness & Complexity

m Restart schemes were studied for strongly or uniformly convex functions
[Nemirovskii and Nesterov, 1985, Nesterov, 2007, louditski and Nesterov,
2014, Lin and Xiao, 2014]

= In particular, Nemirovskii and Nesterov [1985] link sharpness with (optimal)
faster convergence rates using restart schemes.

m Weaker versions of this strict minimum condition used more recently in restart
schemes by [Renegar, 2014, Freund and Lu, 2015].

= Several heuristics [O'Donoghue and Candes, 2015, Su et al., 2014, Giselsson
and Boyd, 2014] studied adaptive restart schemes to speed up convergence.

= The robustness of restart schemes was also studied by Fercoq and Qu [2016] in
the strongly convex case.

= Sharpness used to prove linear converge matrix games by Gilpin et al. [2012].
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Restart schemes

Algorithm 1 Scheduled restarts for smooth convex minimisation (RESTART)

Inputs : o € R" and a sequence ¢t for k=1,..., R.

for k=1,...,R do
T = .A(ivk_l,tk)

end for
Output : = .=z

Here, the number of inner iterations ¢ satisfies
tk206ak, ]CZl,...,R.
for some C > 0 and o > 0 and will ensure

flag) — [ <we
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Restart schemes

Proposition [Roulet and A., 2017]

Restart. Let f be a smooth convex function with parameters (2, L), sharp with
parameters (r, 1) on a set K. Restart with iteration schedule t), = C:’TGT}C, for

k=1,...,R, where C} = 61_T(C/€)%(f(x0) — )72, with ¢ = 4e?/¢ here.
The precision reached at the last point T is given by,

1

F@) — £ < eI (flag) - 1) = 0 (exp(—wIN)) . when T =0,

while,

== feo =1 =0 (N_%) ,  when T >0,
(Te_l(f(%) — f*)%(cm)_%]\f + 1)

S I[S)

where N = ZkR:1 ty Is the total number of iterations.
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Adaptation

m The sharpness constant ;4 and exponent 7 in
pd(z, X*)" < f(x) — f*, forevery x € K.

are of course never observed.
m Can we make restart schemes adaptive? Otherwise, sharpness is useless. . .

m Solves robustness problem for accelerated methods on strongly convex
functions.
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Adaptation

Proposition [Roulet and A., 2017]

Adaptation. Assume N > 2C% ., and if% >7>0,C . > 1

If T = 0, there exists i € [1,...,|logy N|| such that scheme S;( achieves a
precision given by

f(z)— f* <exp (—e_l(cm)_%N) (f(xo) — f7).

If 7 > 0, there exist i € [1,...,|log, N|| and j € [1,...,|logy N|| such that
scheme S; ; achieves a precision given by

f(zo) — f*
(re=1(cr)2(f(20) — fE(N —1)/4+ 1)

2 .
T

Overall, running the logarithmic grid search has a complexity (log, V)* times
higher than running IV iterations using the optimal (oracle) scheme.
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Holder smooth case

The generic Holder smooth case s # 2 is harder.

s When f is smooth with parameters (s, L) and s # 2, the restart scheme is
more complex.

= The universal fast gradient method in [Nesterov, 2015], outputs after ¢
iterations a point = = U(xo, €, t), such that

€sts

f<x>f*s§+<

& 3s

where ¢ is a constant (¢ =8) and p = >

convergence for s-smooth functions.

— 1 is the optimal rate of
m Contrary to the case s = 2 above, we need to schedule both the target

accuracy €, used by the algorithm and the number of iterations ;.

m We lose adaptivity when s # 2.
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Outline

m Sharpness
m Optimal restart schemes, adaptation
s Compressed Sensing Performance

m Numerical results
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Compressed Sensing

Sparse Recovery. Given A € R"*P and observations b = Ax™ on z* € RP, solve

minimize  ||x|1

subject to Az =1b ({1 recovery)

in the variable x € RP.

Definition [Cohen et al., 2009]

Nullspace Property. The matrix A satisfies the Null Space Property (NSP) on
support S C [1, p] with constant o > 1 if for any z € Null(A) \ {0},

allzslly < llzse]ls- (NSP)

The matrix A satisfies the Null Space Property at order s with constant o > 1 if
it satisfies it on every support S of cardinality at most s.
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NSP & Shaprness

Sharpness. Sharpness for /1-recovery of a sparse signals £* means
|z][x = [l&*][x > ~[le — %1 (Sharp)

for any x # x* such that Az = b, and some 0 < v < 1.

Proposition [Roulet, Boumal, and A., 2017]

NSP & Sharpness. Given a coding matrix A € R"*P satisfying (NSP) at order
s with constant o« > 1, if the original signal x* is s-sparse, then for any x € RP

satisfying Ax = b, x # x*, we have

a—1

= a1

lzfly = [l ]l >

This implies signal recovery, i.e. optimality of x* for ({1 recovery), and the
sharpness bound (Sharp) with v = (o —1)/(a+ 1).
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Computational Complexity

Restart scheme.

Restart Scheme (Restart)

Input: yg € RP, gap €9 > ||yo||1 — ||Z||1, decreasing factor p, restart clock ¢

For k=1..., K compute
€k = PEk_1, yr = A(yk—1,€r,t) (NESTA) (Restart)

Output: A point § = yx approximately solving (¢; recovery).

Restart NESTA by [Becker et al., 2011a] with geometrically increasing precision
targets.
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Computational Complexity

Proposition [Roulet, Boumal, and A., 2017]

Complexity. Given a Gaussian design matrix A € R"*P and a signal x* with
sparsity s < n/(c*logp), the optimal (Restart) scheme outputs a point §j such

that
|
19]]1 — ||=*||1 < exp (‘ (1 ey : 2%19) z\e/pN> €0,

with high probability, where ¢ > 0 is a universal constant and N is the total
number of iterations.

= The iteration complexity of solving the (/1 recovery) problem is controlled by
the oversampling ratio n/s.

m Directly generalizes to other decomposable norms.

m Similar result involving Renegar’s condition number and cone restricted
eigenvalues.
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Numerical results

Sample /;-recovery problems. Solve

minimize ||z
subject to Az =1b

using NESTA and restart scheme.

s Generate random design matrix A € R™*P with i.i.d. Gaussian coefficients.
= Normalize A so that AAT =T (to fit NESTA's format)

m Generate observations b = Ax* where z* € RP is an s-sparse vector whose
nonzero coefficients are all ones.
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Numerical results
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Best restarted NESTA (solid red line), overall cost of the adaptive restart
scheme (dashed red line) versus plain NESTA implementation with low accuracy
e = 10~! (dotted black line), and higher accuracy ¢ = 1072 (dash-dotted
black line). Total budget of 500 iterations.

Alex d’'Aspremont Newton Institute, January 2018. 23/27



Numerical results

===s NESTA Continuation ===s NESTA Continuation
= Restart = Restart
== Fair restart == Fair restart
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Inner iterations Inner iterations

Best restarted NESTA (solid red line) and overall cost of the practical restart
schemes (dashed red line) versus NESTA with 5 continuation /restart steps
(dotted blue line) for a total budget of 500 iterations.

Crosses at restart occurrences. Left: n = 200. Right : n = 300.
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Numerical results
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Left: Constant sparsity s = 20. Right: constant number of samples n = 200.
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Numerical results

Number of samples n 100 200 400

Time in seconds 5 _9 _9
for flzy) — f* < 102 5.07 - 10 3.07 - 10 1.66 - 10

Time to achieve € = 1072 by the best restart scheme for increasing number of
samples n

More data less work (ignoring cost of adaptation).
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Conclusion

m Sharpness holds generically.
m Restarting then accelerates convergence, cost of adaptation is marginal.

m Shows better conditioned recovery problems are faster to solve.

Open problems.

m Adaptation in generic Holder gradient case.
m Optimal algorithm for sharp problems without restart.

m Local adaptation to sharpness.
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