Symmetric Cone Programming with Applications to Finance.

A. d'Aspremont*

Stanford University

Mathematical Finance, AMAM 2003.

Saturday, February 15, 2003.

^{*}Email: alexandre.daspremont@polytechnique.org

1 Introduction

Convexity \implies low complexity:

"... In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." T. Rockafellar.

True: Nemirovskii & Yudin (1979).

Very true: Karmarkar (1984).

Seriously true: structured convex programming, Nesterov & Nemirovskii (1994).

ယ

Standard convex complexity analysis

- digits. All convex minimization problems with a first order oracle (returning f(x) and a subgradient) can be solved in polynomial time in size and number of precision
- Proved using the ellipsoid method by Nemirovskii & Yudin (1979).
- Very slow convergence in practice.

1.2 Linear Programming

- Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases.
- complexity of LP. Khachiyan (1979) then used the ellispoid method to show the polynomial
- Karmarkar (1984) describes the first efficient polynomial time algorithm for LP, using interior point methods

From LP to structured convex programs

- Nesterov & Nemirovskii (1994) show that the interior point methods used for LPs can be applied to a larger class of structured convex problems
- complexity proof for LPs The self-concordance analysis that they introduce extends the polynomial time
- Most operations that preserve convexity also preserve self-concordance
- extended to a much wider class. The complexity of a certain number of elementary problems can be directly

1.4 Symmetric cone programs

An important particular case: linear programming on symmetric cones

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax - b \in \mathcal{K} \\ \end{array}$$

These include the LP, second-order (Lorentz) and semidefinite cone:

LP:
$$\{x \in \mathbb{R}^n : x \geq 0\}$$

Second order: $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} : \|x\| \leq y\}$
Semidefinite: $\{X \in \mathbb{S}^n : X \succeq 0\}$

Again, the class of problems that can be represented using these cones is extremely vast.

1.5 Sources

vex Programming", SIAM. Nesterov & Nemirovskii (1994), "Interior Point Polynomial Algorithms in Con-

Ben-Tal & Nemirovski (2001), "Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications", SIAM

http://iew3.technion.ac.il/Labs/Opt/index.php?4

Boyd & Vandenberghe (2003), "Convex optimization", to appear.

http://www.stanford.edu/~boyd/cvxbook.html

1.6 Outline

- Self-concordance and the complexity of Newton's method.
- Symmetric Cone Programming, examples & applications.
- Harder problems...

Newton's method for self-concordant functions

We want to solve the following unconstrained program:

minimize
$$f(x)$$

 $x \in \mathbb{R}^n$

set some m>0. Let x_0 be a initial point and let us note S the (bounded) sublevel where for simplicity here f is convex with $f \in C^2(\mathbb{R}^n)$ and $\nabla^2 f(x) \succeq mI$, for

$$S = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\},$$

This means in particular that $abla^2 f(x)$ is Lipschitz continuous

$$\|(\nabla^2 f(x) - \nabla^2 f(y))h\| \le L \|h\| \|x - y\|, \text{ for } x, y, h \in \mathbb{R}^n,$$

and that there is some M>0 such that

$$\nabla^2 f(x) \preceq MI$$
 on S .

2.1 Newton's method

From the initial point x_0 , the Newton step $\Delta x = x_{i+1} - x_i$ is computed

$$\Delta x = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x),$$

the Newton algorithm then converges in two phases:

The $damped\ phase$: when $\|
abla f(x)\| \geq rac{2m^2}{L}$, we have:

$$f(x_{i+1}) - f(x_i) \le -\gamma(m, L)$$
 for some $\gamma(m, L) > 0$.

The pure Newton phase: when $\|
abla f(x)\| < rac{2m^2}{L}$, the convergence is quadratic (the # of digits of accuracy doubles at each iteration).

This shows polynomial convergence in the strictly convex case

2.2 What's wrong with this analysis?

- defined by the Hessian. The Newton step can be interpreted as a steepest descent step in the geometry
- In particular, the Newton step is affine invariant.
- It solves quadratic problems in one step.

to do with f). case is heavily dependent on a particular choice of geometry (which has nothing In contrast to this, the complexity analysis that was made in the strictly convex

- In practice, the constants m and L cannot be accessed and the method gives a poor indication of the actual convergence rate
- The strict conversity assumption is unnecessarily restrictive

2.3 Self-concordance

A better way of characterizing Lipschitz continuity of the Hessian...

concordant with parameter a iff Definition 1 A function f defined on an open convex set $\mathcal{C} \subset \mathbb{R}^n$ is called self-

$$\left| D^3 f(x)[h, h, h] \right| \le 2a^{-\frac{1}{2}} \left(h^T \nabla^2 f(x) h \right)^{\frac{3}{2}}$$

A function is then called strongly self-concordant iff its sublevel sets

$$\{x \in \mathcal{C} : f(x) \le t\}$$

of Care closed for all $t\in \mathbb{R}$. This implies in particular that $f(x) o\infty$ on the boundary

2.4 Newton's method on s.c. functions

In this case, the two phases in Newton's method become

The damped phase: when $\lambda(f,x) = \|\nabla f(x)\|_{\nabla^2 f(x)} \ge \lambda_*$, we have:

$$f(x_{i+1}) - f(x_i) \le a \left(\lambda_* - \ln(1 + \lambda_*)\right)$$

The pure Newton phase: when $\|\nabla f(x)\| < \lambda_*$, the convergence is quadratic (the # of digits of accuracy doubles at each iteration)

With

$$\lambda_* = 2 - 3^{\frac{1}{2}} = 0.2679...$$

is entirely characterized by the parameter a (not dimension n, etc...). Furthermore This means that the complexity of Newton's method for self-concordant functions general, one can show a = O(n).

2.5 Homotopy

Suppose now that we want to solve the following program:

minimize
$$c^T x$$

s.t. $f_i(x) \leq 0, \quad i = 1, ..., m$

we replace it by the following unconstrained problem with $f_i(x):\mathbb{R}^n o \mathbb{R}$, convex, strongly self-concordant for i=1,...,n. For t>0,

minimize
$$tc^T x + \left(\sum_{i=1}^n f_i(x)\right)$$

 $x \in \mathbb{R}^n$

and the complexity analysis can be extended to constrained problems

2.6 Examples

Quadratic functions of course...

Logarithmic barriers for symmetric cones

LP: $-\sum_{i=1}^{n} \ln x_i$ Second order: $-\ln \left(y - x^T x\right)$

Semidefinite: $-\ln \det X$

The function $x \ln x - \ln x$

The function $x\ln x$ and its conjugate $\ln\left(\sum_{i=1}^n \exp(x_i)\right)$, with small mods... (a.k.a. geometric programming)

2.7 Combination rules

- Affine invariance.
- Stability under convex combination.
- In fact, most operations that preserve convexity also preserve self-concordance.
- A function is self-concordant iff it is self-concordant along all lines.
- If f is strongly self-concordant, then so is it's conjugate f^* .

2.8 Efficient algorithms

Solve these convex problems with known complexity bounds.

Solve both primal and dual at the same time, hence produce a certificate of either optimality or infeasibility.

Vast expressive power...

Reliability similar to LP solvers.

No "fudging" involved...

3 Symmetric cone programs

In the following, focus on symmetric cone programs:

$$\label{eq:continuous_subject_to} \begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax - b \in \mathcal{K} \end{array}$$

 ${\cal K}$ is a product of symmetric cones: ${\cal K}=LP imes SO^k imes SDP^l$ with

LP:
$$\{x \in \mathbb{R}^n : x \geq 0\}$$

Second order: $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \leq y\}$
Semidefinite: $\{X \in \mathbb{S}^n : X \succeq 0\}$

Extremely large catalog of applications.

3.1 Classic format

All the programs that follow are particular instances of:

minimize
$$c^T x$$

subject to $Ax = b$

$$||B_k x + d_k|| \le C_k x + e_k$$
 for $k = 1, ..., K$

$$\sum_{j=1}^{n} D_{l,j} x \leq D_{l,0}$$
 for $l = 1, ..., L$

where $D_{l,j} \in \mathsf{S}^n$ and $A \preceq B$ means B-A positive semidefinite.

ω 2 Example: Robust linear programming

Solve

with a_i in a confidence ellipsoid:

$$\mathcal{E}_i = \{ \bar{a}_i + V_i u : ||u|| \le 1 \}.$$

Find a *robust solution*, a solution valid for all values of a_i :

$$\begin{aligned} & \text{minimize} & & c^T x \\ & \text{subject to} & & \sup_{a_i \in \mathcal{E}_i} \left\{ a_i^T x \right\} \leq b_i & \text{for } i = 1, ..., m \end{aligned}$$

This is a second order cone program:

3.3 Stochastic LP

A similar program:

minimize
$$c^T x$$
 subject to $P\left(a_i^T x \leq b_i\right) \geq \eta$ for $i=1,...,m$

- Suppose $a_i \sim \mathcal{N}(\bar{a}_i, V_i)$.
- The problem becomes:

$$\begin{aligned} & \text{minimize} & & c^T x \\ & \text{subject to} & & \bar{a}_i^T x + \Phi^{-1}(\eta) \left\| V_i^{1/2} x \right\| \leq b_i & \text{for } i=1,...,m \end{aligned}$$

where Φ is the Gaussian CDF.

In this case, the feasible sets can become non-convex:

3.4 Gamma management

- Following Douady (1995), suppose that we hold a delta hedged portfolio on nassets S_i with gamma Γ
- We want to make it gamma positive
- gamma given by γ_i (no baskets). For liquidity reasons, we can only use options on each individual asset S_i , with

If delta neutrality is maintained at all times, the gamma positivity condition becomes

$$\Gamma + \operatorname{diag}(x_i \gamma_i) \succeq 0$$

where x_i is the number of options on asset S_i .

is found by solving With proportional transaction costs k_i , the cheapest gamma positive portfolio

minimize
$$\sum_{i=1}^{n} k_i |x_i|$$
 subject to $\Gamma + \mathbf{diag}(x_i \gamma_i) \succeq 0$ for $i = 1, ..., n$

which is a semidefinite program.

3.5 Libor market model calibration

Swaption prices can be approximated by:

$$Swaption = level_t \times BS(swap_t, V_T, T)$$

with

$$\begin{split} V_T &= \int_t^T \left\| \sum_{i=1}^N \hat{\omega}_i(t) \gamma(s,T_i-s) \right\|^2 ds \\ &= \int_t^T \left(\sum_{i=1}^N \sum_{j=1}^N \hat{\omega}_i(t) \hat{\omega}_j(t) \left\langle \gamma(s,T_i-s), \gamma(s,T_j-s) \right\rangle \right) ds \\ &= \int_t^T \mathbf{Tr} \left(\Omega_t \Gamma_s \right) ds \\ &= \left(\left\langle \gamma(s,T_i-s), \gamma(s,T_j-s) \right\rangle \right)_{i,j} \end{split}$$
 where $\Gamma_s = \left(\left\langle \gamma(s,T_i-s), \gamma(s,T_j-s) \right\rangle \right)_{i,j}$

- Approximates a sum of lognormals by a lognormal, matching moments.
- The weights $\hat{\omega}_i(t)$ are computed from:

$$\hat{\omega}_i(t) = \omega_i(t) \frac{K(t, T_i)}{swap(t, T, T_N)}$$

forwards: where $\omega_i(t)$ are the coefficients in the swap's decomposition as a basket of

$$swap(t,T,T_n) = \sum_{i=i_T}^n \omega_i(t) K(t,T_i^{float})$$

with the weights given by:

$$\omega_i(t) = \frac{coverage(T_i^{float}, T_{i+1}^{float})B(t, T_{i+1}^{float})}{Level(t, T_i^{fixed}, T_n^{fixed})}$$

where $0 \le \omega_i(t) \le 1$.

3.6 Calibration program

The calibration problem becomes:

find
$$X$$
 such that ${f Tr}\,(\Omega_iX)=\sigma^2_{market,i}T_i$ for $i=1,...,m$ a semidefinite feasibility problem.

which is a semidefinite feasibility problem.

3.7 Objectives

Tikhonov regularization (see Cont (2001) on volatility surface):

minimize
$$t$$
 subject to $\|X\| \le t$ $\mathbf{Tr}\left(\Omega_i X\right) = \sigma_{market,i}^2 T_i$ for $i=1,...,m$ $X \succeq 0$

Smoothness:

minimize
$$t$$
 subject to $\|\Delta X\| \le t$ $\mathbf{Tr}\left(\Omega_i X\right) = \sigma_{market,i}^2 T_i$ for $i=1,...,m$ $X \succeq 0$

Distance to a given matrix C:

minimize
$$t$$
 subject to $-tI \preceq X - C \preceq tI$
$$\mathbf{Tr}\left(\Omega_i X\right) = \sigma^2_{market,i} T_i \quad \text{for } i=1,...,m$$
 $X \succeq 0$

Bounds on the price of another swaption:

$$\begin{array}{ll} \min/\max & \operatorname{Tr}\left(\Omega_0 X\right) \\ \operatorname{subject\ to} & \operatorname{Tr}\left(\Omega_i X\right) = \sigma_{market,i}^2 T_i \quad \text{for } i=1,...,m \\ & X \succeq 0 \end{array}$$

Robust solution (solution centering):

$$\begin{array}{ll} \text{maximize} & t \\ \text{subject to} & \sigma_{Bid,i}T_i+t \leq \text{Tr}\left(\Omega_iX\right) \leq \sigma_{Ask,i}T_i-t \quad \text{for } i=1,...,m \\ & X \succeq tI \\ & t \geq 0 \end{array}$$

• Or a mix...

Symmetric Cone Programming with Applications to Finance.

Caveat: $\mathbf{Rank}(X)$. The Minimum rank problem is NP-Complete, but excellent heuristics exist (see Boyd, Fazel & Hindi (2000)).

Smooth calibrated matrix

Level

Spread

3.8 Infeasibility

If the program is not feasible, we get a Farkas type certificate:

$$\lambda \in \mathbb{R}^M : 0 \preceq \sum_{k=1}^M \lambda_k \Omega_k \quad ext{et} \quad \lambda^T \left(\sigma^2 T
ight) < 0$$

- constitute a viable price system within the model This detects an arbitrage: the options with variance $\sigma_k^2 T_k$ with $\lambda_k > 0$ cannot
- (MINCARD), but same heuristics apply (see Boyd et al. (2000)). Detecting the smallest set of products that admits an arbitrage is NP-complete

ယ္ပ

3.9 Bounds on swaption prices

The objective can be the BS variance of another swaption. (replicating a particular swaption with more liquid ones):

$$\begin{array}{ll} \text{maximiser} & \sigma_{\max}^2 T = \text{Tr}(\Omega_0 X) \\ \text{s.t.} & \text{Tr}(\Omega_k X) = \sigma_k^2 T_k \text{ for } k = 1,...,M \\ & X \succeq 0 \end{array}$$

Paras (1996). The dual program can be interpreted as a hedging program à la Avellaneda &

If $BS_k(v)$, is the Black Scholes price of swaption k for a variance v:

$$P = \inf_{\lambda} \left\{ \sum_{k=1}^{M} \lambda_k C_k + \sup_{X \succeq 0} \left(BS_0(\text{Tr}(\Omega_0 X)) - \sum_{k=1}^{M} \lambda_k BS_k\left(\text{Tr}(\Omega_k X)\right) \right) \right\}$$

or again

 $Price = Min \{PV \text{ static hedge} + Max(PV \text{ residual})\}$

- Example on a Nov. 6 2000 dataset. Calibrated using all caplets and the into 6Y, 17Y into 3Y. (Figure 1) (Data courtesy of BNP Paribas, Londres). following swaptions: 5Y into 5Y, 5Y into 2Y, 5Y into 10Y, 2Y into 2Y, 2Y into 5Y, 7Y into 5Y, 10Y into 5Y, 10Y into 2Y, 10Y into 10Y, 7Y into 3Y, 4Y
- The model used here is extremely simple (stationary in sliding Libor) but it gives reasonable bounds for short maturities

Figure 1: Bornes inf. et sup. sur le prix des swaptions.

3.10 Robust portfolio allocation with uncertain data

- Following El Ghaoui (1999), in a one period model. Assets p_i , for i=1,...,n, with mean p and covariance Σ .
- ullet Partial information on Σ , i.e. $\Sigma \in \mathcal{U}$ where

$$\mathcal{U} = X \in \mathsf{S}^n_+: \quad X_{i,j} \geq 0 \quad (i,j) \in I_+ \ X_{i,j} \leq 0 \quad (i,j) \in I_- \ X_{i,j} = \mathsf{\Sigma}^0_{i,j} \quad (i,j) \in I_0$$

- Set of admissible portfolios given by $Ax \leq b$.
- Objective: minimize the worst-case variance:

minimize max
$$x^T \Sigma x$$
 s.t. $\Sigma \in \mathcal{U}$ $Ax \leq t$

Solution given by the following semidefinite program:

minimize
$$\operatorname{Tr}\left(X\Sigma^{0}\right)$$
 subject to $X\succeq xx^{T}$ $Ax\leq b$ $X\in\mathcal{U}$

or explicitly:

minimize
$$\mathbf{Tr}\left(X\Sigma^{0}\right)$$
 subject to $Ax \leq b$ $\begin{bmatrix} X & x \\ x^{T} & 1 \end{bmatrix} \succeq 0$ $\begin{bmatrix} X & x \\ x^{T} & 1 \end{bmatrix} \succeq 0$ $X_{i,j} \geq 0 \quad (i,j) \in I_{+}$ $X_{i,j} \leq 0 \quad (i,j) \in I_{-}$ $X_{i,j} = \Sigma_{i,j}^{0} \quad (i,j) \in I_{0}$ $X \succeq 0$

ullet The optimal portfolio is then given by x^{opt} .

The Hamburger moment problem

sequence iff the corresponding Hankel matrix is positive semidefinite: Exact solution via semidefinite programming: $y=(y_0,y_1,...,y_{2m})$ is a moment

$$H_m(y) = \left[egin{array}{ccccc} y_0 & y_1 & y_2 & . & y_m \ y_1 & y_2 & . & . & y_{m+1} \ . & . & . & . & . \ y_m & y_{m+1} & . & y_{2m-1} & y_{2m} \end{array}
ight] \succeq 0$$

Let μ be the corresponding measure with $y_i = \int x^i d\mu$.

3.12 Dual: sum of squares polynomials

Hilberth's 17 th problem: let $p(x) \in \mathbb{R}[x]$ (dimension one):

$$p(x) \ge 0 \Leftrightarrow p(x) = \sum_{i=1}^{r} q_i(x)^2$$

Again, solution via semidefinite programming, $p(x) \geq 0$ for $x \in \mathbb{R}$ iff

$$p(x) = \operatorname{Tr}(XH_m(y)) \quad \text{for } x \in \mathbb{R}$$
 $X \succeq 0$

where $y = (1, x, ..., x^{2m})$.

3.13 Conic duality

On \mathbb{R}^n the situation is different: see e.g. Berg (1980):

$$s$$
 is p.s.d. $\Leftrightarrow \langle s, p_{\alpha} \rangle \geq 0, \forall \ p(x) \in \mathbb{R}^n[x]$ with $p(x)$ SOS

and

$$s$$
 is a moment sequence $\Leftrightarrow \ \langle s,p_{lpha}
angle \geq 0, orall \ p(x) \in \mathbb{R}^n[x]$ with $p(x) \geq 0.$

See Putinar (1993) and Lasserre (2001) on the solution to the $\mathbb{K} ext{-}\mathsf{moment}$ problem by SOS polynomials and semidefinite programming

3.14 Software

SEDUMI (GPL license), for symmetric cone programs.

http://fewcal.kub.nl/sturm/software/sedumi.html

MOSEK (Free for academic use), for general convex programs and 0-1 programs.

http://www.mosek.com

4 Conclusion

Up to now, said X times the word "convex", said "nonlinear" only twice (here included).

Nonlinearity is irrelevant to computational complexity

- Very consitent theory to describe computational complexity of a large class of convex problems
- In practice (for small sizes): experience comparable to that of linear progamming. Fast reliable solvers you can forget...

References

- Avellaneda, M. & Paras, A. (1996), 'Managing the volatility risk of portfolios of derivative securities: the lagrangian uncertain volatility model, Applied *Mathematical Finance* 3, 21–52.
- Ben-Tal, A. & Nemirovski, A. (2001), Lectures on modern convex optimization : Programming Society, Philadelphia, PA. timization, Society for Industrial and Applied Mathematics: Mathematical analysis, algorithms, and engineering applications, MPS-SIAM series on op-
- Berg, C. (1980), The multidimensional moment problem and semi-groups, in H. Landau, ed., 'Moments in Mathematics', AMS, Providence, RI, pp. 110—
- Boyd, S. P., Fazel, M. & Hindi, H. (2000), 'A rank minimization heuristic with application to minimum order system approximation.', *Working paper. American* Control Conference, September 2000

Boyd, S. & Vandenberghe, L. (2003), Convex Optimization, To appear.

Cont, R. (2001), 'Inverse problems in financial modeling: theoretical and numerical aspects of model calibration.', Lecture Notes, Princeton University.

Douady, R. (1995), 'Optimisation du gamma d'une option sur panier ou sur spread en l'absence d'options croisées.', Working paper .

El Ghaoui, L. (1999), 'Robust portfolio allocation with uncertain data', mimeo .

Karmarkar, N. K. (1984), 'A new polynomial-time algorithm for linear programming', Combinatorica 4, 373-395

Khachiyan, L. G. (1979), 'A polynomial algorithm in linear programming (in Russian)', *Doklady Akademiia Nauk SSSR* 224, 1093–1096

Lasserre, J. B. (2001), 'Global optimization with polynomials and the problem of moments', SIAM Journal on Optimization 11(3), 796–817

Nemirovskii, A. S. & Yudin, D. B. (1979), 'Problem complexity and method efficiency in optimization', Nauka (published in English by John Wiley, Chichester, 1983)

Nesterov, I. & Nemirovskii, A. (1994), Interior-point polynomial algorithms in convex programming, Society for Industrial and Applied Mathematics, Philadel-

Putinar, M. (1993), 'Positive polynomials on compact semi-algebraic sets', *Indiana* University Mathematics Journal 42(3), 969–984