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1 Introduction

e Convexity =— low complexity:

In fact the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity.” T. Rockafellar.

e True: Nemirovskii & Yudin (1979).

e Very true: Karmarkar (1984).

e Seriously true: structured convex programming, Nesterov & Nemirovskii (1994).
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1.1 Standard convex complexity analysis

e All convex minimization problems with a first order oracle (returning f(z) and
a subgradient) can be solved in polynomial time in size and number of precision
digits.

e Proved using the ellipsoid method by Nemirovskii & Yudin (1979).

e Very slow convergence in practice.
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1.2 Linear Programming

e Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very
efficient in most cases.

e Khachiyan (1979) then used the ellispoid method to show the polynomial
complexity of LP.

o Karmarkar (1984) describes the first efficient polynomial time algorithm for
LP, using interior point methods.
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1.3 From LP to structured convex programs

e Nesterov & Nemirovskii (1994) show that the interior point methods used for
LPs can be applied to a larger class of structured convex problems.

e T he self~concordance analysis that they introduce extends the polynomial time

complexity proof for LPs.

e Most operations that preserve convexity also preserve self-concordance.

e The complexity of a certain number of elementary problems can be directly
extended to a much wider class.
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1.4 Symmetric cone programs

e An important particular case: linear programming on symmetric cones

minimize ¢l

subject to Ax —b e K

e These include the LP, second-order (Lorentz) and semidefinite cone:

LP: {x e R": 2 > 0}
Second order: {(z,y) €e R" x R : ||z|| < y}
Semidefinite: {X € S": X > 0}

e Again, the class of problems that can be represented using these cones is

extremely vast.
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1.5 Sources

e Nesterov & Nemirovskii (1994), " Interior Point Polynomial Algorithms in Con-
vex Programming”, SIAM.

e Ben-Tal & Nemirovski (2001), "Lectures On Modern Convex Optimization:
Analysis, Algorithms, And Engineering Applications”, SIAM.

http://iew3.technion.ac.il/Labs/0Opt/index.php74

e Boyd & Vandenberghe (2003), " Convex optimization”, to appear.

http://www.stanford.edu/ "boyd/cvxbook.html
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1.6 OQutline

e Self-concordance and the complexity of Newton's method.

e Symmetric Cone Programming, examples & applications.

e Harder problems...
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2 Newton’'s method for self-concordant functions

We want to solve the following unconstrained program:

minimize f(x)
xr e R"

where for simplicity here f is convex with f € C?(R") and V2f(z) > ml, for
some m > 0. Let zg be a initial point and let us note S the (bounded) sublevel
set

S={xeR": f(z) < f(z0)},

This means in particular that V2 f(z) is Lipschitz continuous
|(V2f(2) = V2f(w)) || < LRIl Iz = yll, for @,y,h € R™,
and that there is some M > 0 such that

V2f(z) < MI on S.
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2.1 Newton's method

From the initial point zg, the Newton step Ax = x; 11 — ; Is computed as:

—1
Az =— (V3f(z)) " Vf(z),
the Newton algorithm then converges in two phases:
2

e The damped phase: when ||V f(z)| > m$ we have:

NA%\I'HV - ,\uARsv < |J\A§v N\v for some Q\ASU N\v > 0.

2
e The pure Newton phase: when ||V f(2)|| < m$ the convergence is quadratic
(the # of digits of accuracy doubles at each iteration).

This shows polynomial convergence in the strictly convex case.
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2.2 What's wrong with this analysis?

e The Newton step can be interpreted as a steepest descent step in the geometry
defined by the Hessian.

e In particular, the Newton step is affine invariant.
e |t solves quadratic problems in one step.

In contrast to this, the complexity analysis that was made in the strictly convex

case is heavily dependent on a particular choice of geometry (which has nothing
to do with f).

e |n practice, the constants m and L cannot be accessed and the method gives
a poor indication of the actual convergence rate.

e The strict conversity assumption is unnecessarily restrictive.
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2.3 Self-concordance

A better way of characterizing Lipschitz continuity of the Hessian...

Definition 1 A function f defined on an open convex set C C R" is called self-

concordant with parameter a iff

FSAH:? h, m: < w@|w Amﬂdwi&v:vw

A function is then called strongly self-concordant iff its sublevel sets

{xeC: f(z) <t}

are closed for all t € R. This implies in particular that f(x) — oo on the boundary
of C.
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2.4 Newton's method on s.c. functions

In this case, the two phases in Newton's method become:

e The damped phase: when \(f,x) = __Q%AHV__QM\A&V > A«, we have:
f(@it1) — f(zi) < a(Xs —In(1+ Ai))

e The pure Newton phase: when ||V f(x)|| < A«, the convergence is quadratic
(the # of digits of accuracy doubles at each iteration).

With
1
Ax =2 — 32 =0.2679...

This means that the complexity of Newton’'s method for self-concordant functions

is entirely characterized by the parameter a (not dimension n, etc...). Furthermore,
in general, one can show a = O(n).
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2.5 Homotopy

Suppose now that we want to solve the following program:
minimize ¢!z
S.t. \.\QAHV <0, 2=1,....m

with f;(x) : R® — R, convex, strongly self-concordant for ¢ = 1,...,n. For t > 0,
we replace it by the following unconstrained problem
minimize tclx + A g \%&vv
x e R"

and the complexity analysis can be extended to constrained problems.
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2.6 Examples

e Quadratic functions of course...

e Logarithmic barriers for symmetric cones

LP: — > yInx;
Second order: —In A@ — &Hav
Semidefinite: —Indet X

e The function zlnz — Inx

e The function zInx and its conjugate _:A "1 mXUTSVY with small mods...

(a.k.a. geometric programming)
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2.7 Combination rules

e Affine invariance.

e Stability under convex combination.

e In fact, most operations that preserve convexity also preserve self-concordance.

e A function is self-concordant iff it is self-concordant along all lines.

e If f is strongly self-concordant, then so is it's conjugate f*.
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2.8 Efficient algorithms

e Solve these convex problems with known complexity bounds.

e Solve both primal and dual at the same time, hence produce a certificate of
either optimality or infeasibility.

e Vast expressive power...

e Reliability similar to LP solvers.

e No "fudging’ involved...
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3 Symmetric cone programs

e In the following, focus on symmetric cone programs:
minimize ¢!z
subject to Ax —b e K

e /C is a product of symmetric cones: K = LP X SOF x SDP' with

LP: {x e R": z > 0}
Second order: {(z,y) € R" xR : ||z|| £ y}
Semidefinite: {X €S™: X > 0}

e Extremely large catalog of applications.
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3.1 Classic format

e All the programs that follow are particular instances of:

minimize !z

subject to Ax =b
|Brx +d|| L Crx+e, fork=1,..,. K

21Dz =Dy forl=1,.., L

where D) ; € S™ and A < B means B — A positive semidefinite.
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3.2 Example: Robust linear programming

e Solve

minimize clz
subject to @Wa <b fori=1,....m

with a; in a confidence ellipsoid:

Ei=1a; + Viu: [|u|| <1}.

e Find a robust solution, a solution valid for all values of a;:

minimize !z

subject to sup, ¢, AQWHW <b fori=1,....m

This is a second order cone program:

minimize clz

subject to mw.& + :Sﬂ.&: <b, fori=1,....m
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3.3 Stochastic LP

e A similar program:

minimize clx

subject to P A@wJ& < Sv >n fori=1,....m
e Suppose a; ~ N (a;, V;).

e The problem becomes:

minimize clx

subject to mwﬁ& + o 1(n) 7 <b, fori=1,....m

SH /2

where ® is the Gaussian CDF.
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e In this case, the feasible sets can become non-convex:
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3.4 Gamma management

e Following Douady (1995), suppose that we hold a delta hedged portfolio on n
assets S; with gamma I

e We want to make it gamma positive

e For liquidity reasons, we can only use options on each individual asset S;, with
gamma given by ; (no baskets).
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e If delta neutrality is maintained at all times, the gamma positivity condition

becomes:
I+ diag (z;v;) = 0

where x; is the number of options on asset .S;.

e With proportional transaction costs k;, the cheapest gamma positive portfolio
is found by solving

minimize 1k |

subject to I +diag(z;v;) =0 fori=1,...n

which is a semidefinite program.

A. d'Aspremont Math. Finance, AMAM 2003 Nice, Saturday Feb. 15 2003.



25 Symmetric Cone Programming with Applications to Finance.

3.5 Libor market model calibration

e Swaption prices can be approximated by:

Swaption = levely x BS(swap, Vi, T)

with
TN i
Vo = wj S, 4y — 5 5
r= 80, Ti = )| 4
(N N
= [ | X X @it)a;(0) (v(s, T = ),9(s. Ty = 9)) | ds
1=19=1
. J
n\ﬂ Tr (4T s) ds

where [ = AAim,ﬁ. | inmv@. B mvvvﬁ.
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e Approximates a sum of lognormals by a lognormal, matching moments.

e The weights &;(t) are computed from:

K(t, T;)
swap(t, T, Ty)

@;(t) = wi(t)

where w;(t) are the coefficients in the swap’s decomposition as a basket of

forwards:
mn

swap(t, T, Tn) = > wi(t)K(t, T/ ")
i=ip
with the weights given by:

ooemﬁgmmﬁﬁio@ﬂ ﬂ%mﬁvmﬁv Hhm&

7

Level(t, T/ized, ﬂ&?a&v

wi(t) =

where 0 < w;(t) < 1.
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3.6 Calibration program

e The calibration problem becomes:

find X
such that Tr (€, X) = Qwﬁiw& S fori=1,...m
X =0

which is a semidefinite feasibility problem.
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3.7 Objectives

Symmetric Cone Programming with Applications to Finance.

e Tikhonov regularization (see Cont (2001) on volatility surface):

minimize
subject to

e Smoothness:
minimize
subject to

t
|X]| <t

Tr (X) = 0 gpperi i fori=1,..,m
X =0

t

|AX] <

Tr(2X) = 0 gpper il fori=1,..,m
X =0

A. d’Aspremont
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e Distance to a given matrix C"
minimize t
subject to —tI X X —C <X tI
Tr(X) = 0 gpperi i fori=1,..,m
X >0

e Bounds on the price of another swaption:

min/max Tr (QqX)
subject to Tr (Q;X) = Qm:g%& ;o fori=1,...,m
X =0

e Robust solution (solution centering):

maximize ¢

subject to op;g;T; +t < Tr(2;X) <opgr il —t fori=1,...m
X = tl
t>0
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e Or a mix....

e Caveat: Rank(X). The Minimum rank problem is NP-Complete, but excellent
heuristics exist (see Boyd, Fazel & Hindi (2000)).
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Smooth calibrated matrix

—03l

Level Spread
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3.8 Infeasibility

e If the program is not feasible, we get a Farkas type certificate:

M
AeRM: 0= 3 NQ, et AT (07T) <0
k=1

e This detects an arbitrage: the options with variance Qmﬂw with A > 0 cannot
constitute a viable price system within the model.

e Detecting the smallest set of products that admits an arbitrage is NP-complete
(MINCARD), but same heuristics apply (see Boyd et al. (2000)).
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3.9 Bounds on swaption prices

e The objective can be the BS variance of another swaption.(replicating a par-
ticular swaption with more liquid ones):
maximiser o2, T = Tr(QyX)

s.t. Tr(Q,X) = qMﬂw fork=1,.... M
X =0

e The dual program can be interpreted as a hedging program a la Avellaneda &
Paras (1996).

o If BS.(v), is the Black Scholes price of swaption k for a variance v:

M

M
P =inf MU A.CL + sup | BSp(Tr(20X)) — MU A BSE (Tr(€2.X))
A k=1 X0 k=1

or again

Price = Min {PV static hedge + Max (PV residual)}
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e Example on a Nov. 6 2000 dataset. Calibrated using all caplets and the
following swaptions: 5Y into 5Y, 5Y into 2Y, 5Y into 10Y, 2Y into 2Y, 2Y
into bY, 7Y into 5Y, 10Y into 5Y, 10Y into 2Y, 10Y into 10Y, 7Y into 3Y, 4Y
into 6Y, 17Y into 3Y. (Figure 1) (Data courtesy of BNP Paribas, Londres).

e The model used here is extremely simple (stationary in sliding Libor) but it

gives reasonable bounds for short maturities.
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Sydney Opera House Effect
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Figure 1: Bornes inf. et sup. sur le prix des swaptions.
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3.10 Robust portfolio allocation with uncertain data

e Following ElI Ghaoui (1999), in a one period model. Assets p;, for i = 1,...,n,
with mean p and covariance X.

e Partial information on 2, i.e. 2 € U where

N\m“vmmmg.@_.” s.Q.NO (i,7) € I+
X5 = Mma. (2,7) € Ig

e Set of admissible portfolios given by Ax < b.

e Objective: minimize the worst-case variance:

minimize max zl ¥z
st. XeUu
Ax < b
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e Solution given by the following semidefinite program:

minimize Tr ANMw

subject to X > xx
Ax < b
Xelu

or explicitly:
minimize Tr ANMOV
subject to Ax <b
X x
-
m,_ 1 ~ 0
X; 1,7 >0 Asfwv S A
Xij MOOQL.Vm.NI
NQIMQ (7,7) € I
X >0

e The optimal portfolio is then given by z°Pt.
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3.11 The Hamburger moment problem

Exact solution via semidefinite programming: y = (yo, Y1, ---, Y2;m) IS @ moment
sequence iff the corresponding Hankel matrix is positive semidefinite:

Y Y1 Y2 - Ym |
Ym Ym+1 - Y2om—1 Y2m

Let 1 be the corresponding measure with y; = [ z'dp.
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3.12 Dual: sum of squares polynomials

Hilberth's 17!" problem: let p(z) € R[z] (dimension one):

p(z) > 0 < p(z) = Mﬁ gi(x)?
1=1

Again, solution via semidefinite programming, p(x) > 0 for z € R iff
p(x) = Tr(XHmn(y)) forxeR
X =0

where y = (1, z, ..., z°™).
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3.13 Conic duality

e On R" the situation is different: see e.g. Berg (1980):
sis p.s.d. < (s,pa) > 0,V p(x) € R"[z] with p(x) SOS
and

s is a moment sequence <& (s,pq) > 0,V p(xz) € R"[z] with p(x) > 0.

e See Putinar (1993) and Lasserre (2001) on the solution to the K-moment
problem by SOS polynomials and semidefinite programming.
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3.14 Software

e SEDUMI (GPL license), for symmetric cone programs.

http://fewcal.kub.nl/sturm/software/sedumi.html

e MOSEK (Free for academic use), for general convex programs and 0-1 pro-

grams.

http://www.mosek.com
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4 Conclusion

e Up to now, said X times the word " convex”, said "nonlinear” only twice (here

included).

Nonlinearity is irrelevant to computational complexity

e Very consitent theory to describe computational complexity of a large class of
convex problems

e In practice (for small sizes): experience comparable to that of linear progam-
ming. Fast reliable solvers you can forget...
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