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Overview

• Transportation-like Problems 

• Regularized Transport 

• Optimal Transport Barycenters 

• Heat Kernel Approximation
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also reveal that the network simplex behaves in O(n2
) in our con-

text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
2000; Kanters et al. 2003; Morovic and Sun 2003].
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2

) algorithm in practice
whereas the transport simplex runs in O(n3

).

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140⇥140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for ↵ = 1/4, ↵ = 1/2, and ↵ = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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Figure 9. More examples of semi-discrete optimal transport.
Note how the solids deform and merge to form the sphere on the
first row, and how the branches of the star split and merge on the
second row.

some holes in the legs of the armadillo in Figure 9). With a better representation of
discontinuity, one may obtain a more precise representation of the transport. This
leads to the following open questions, that concern the continuous setting for some
particular representations of µ and ⌫ :

(1) Given two tetrahedral meshes M and M 0, is it possible to characterize
the locus of the points where T is discontinuous (discontinuity locus), and
invent an algorithm that generates a faithful representation of it ?

(2) What does the discontinuity locus looks like if M and M 0 both have a
density linearly interpolated over the tetrahedra ?

(3) What does the discontinuity locus looks like if µ and ⌫ are supported by
two di↵erent set of spheres ?
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the interpolated value is guaranteed to be always lower, which en-
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adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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Figure 9. More examples of semi-discrete optimal transport.
Note how the solids deform and merge to form the sphere on the
first row, and how the branches of the star split and merge on the
second row.

some holes in the legs of the armadillo in Figure 9). With a better representation of
discontinuity, one may obtain a more precise representation of the transport. This
leads to the following open questions, that concern the continuous setting for some
particular representations of µ and ⌫ :

(1) Given two tetrahedral meshes M and M 0, is it possible to characterize
the locus of the points where T is discontinuous (discontinuity locus), and
invent an algorithm that generates a faithful representation of it ?

(2) What does the discontinuity locus looks like if M and M 0 both have a
density linearly interpolated over the tetrahedra ?

(3) What does the discontinuity locus looks like if µ and ⌫ are supported by
two di↵erent set of spheres ?
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Proposition:

If c(x, y) = � log(cos(min(

d(x,y)
�

,

⇡

2 ))

then WF 1/2
c is a distance on M+(X).



Wasserstein Gradient Flows
Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

µt+1 = Prox

W
⌧f (µt)

def.
= argmin

µ2M+(X)
W↵

↵ (µt, µ) + ⌧f(µ)



Wasserstein Gradient Flows
Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

µt+1 = Prox

W
⌧f (µt)

def.
= argmin

µ2M+(X)
W↵

↵ (µt, µ) + ⌧f(µ)

Formal limit ⌧ ! 0: @tµ = div (µr(f 0(µ)))



Wasserstein Gradient Flows
Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

µt+1 = Prox

W
⌧f (µt)

def.
= argmin

µ2M+(X)
W↵

↵ (µt, µ) + ⌧f(µ)

Formal limit ⌧ ! 0: @tµ = div (µr(f 0(µ)))

(heat di↵usion)f(µ) =
R
log(

dµ
dx )dµ @tµ = �µ



Wasserstein Gradient Flows
Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

µt+1 = Prox

W
⌧f (µt)

def.
= argmin

µ2M+(X)
W↵

↵ (µt, µ) + ⌧f(µ)

Formal limit ⌧ ! 0: @tµ = div (µr(f 0(µ)))

(advection)

f(µ) =
R
wdµ @tµ = div(µrw)

(heat di↵usion)f(µ) =
R
log(

dµ
dx )dµ @tµ = �µ

Evolution µtEvolution µtrw rw



Wasserstein Gradient Flows
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Formal limit ⌧ ! 0: @tµ = div (µr(f 0(µ)))

(advection)

f(µ) =
R
wdµ @tµ = div(µrw)

(heat di↵usion)f(µ) =
R
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dµ
dx )dµ @tµ = �µ

(non-linear di↵usion)f(µ) = 1
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(dµdx )

m�1dµ @tµ = �µm

Evolution µtEvolution µtrw rw



Overview

• Transportation-like Problems 

• Regularized Transport 

• Optimal Transport Barycenters 

• Heat Kernel Approximation



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)

Optimal transport: f2 = ◆⌫f1 = ◆µ



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)

Unbalanced transport:

f1 = �KL(·|µ) f2 = �KL(·|⌫)
Optimal transport: f2 = ◆⌫f1 = ◆µ



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)

Unbalanced transport:

f1 = �KL(·|µ) f2 = �KL(·|⌫)
Optimal transport: f2 = ◆⌫f1 = ◆µ

Gradient flows:

f1 = ◆µt f2 = f



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)

Regularization and positivity barrier.

Regularization: min
⇡

E(⇡) + "KL(⇡|⇡0)

"KL(⇡|⇡0)

Unbalanced transport:

f1 = �KL(·|µ) f2 = �KL(·|⌫)
Optimal transport: f2 = ◆⌫f1 = ◆µ

Gradient flows:

f1 = ◆µt f2 = f



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
= hc, ⇡i+ f1(P1]⇡) + f2(P2]⇡)

Regularization and positivity barrier.

Discretization grid (prescribed support).

Regularization: min
⇡

E(⇡) + "KL(⇡|⇡0)

"KL(⇡|⇡0)

Unbalanced transport:

f1 = �KL(·|µ) f2 = �KL(·|⌫)
Optimal transport: f2 = ◆⌫f1 = ◆µ

Gradient flows:

f1 = ◆µt f2 = f



Transportation-like Problems

min
⇡2M+(X⇥X)

E(⇡) def.
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Regularization and positivity barrier.

Discretization grid (prescribed support).

Regularization: min
⇡

E(⇡) + "KL(⇡|⇡0)

"KL(⇡|⇡0)

Implicit KL stepping.⇡0
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EMD Entropy

Discrete analog:  Cuturi, NIPS 2013
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puted
using
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ecause
the

m
odels

are
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use
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to
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the
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function
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to
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flipped
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W

asserstein
propagation
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)

paired
w

ith
a

sparse
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fixed
correspondences

breaking
the

sym
m

etry
is

enough
to

recoverboth
m

aps.The
resulting

softm
ap

m
atrices

are
ofsize
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4⇥

1
0
2
4,an

orderofm
agnitude

largerthan
the

m
apsgenerated

in
[Solom

on
etal.

2012],com
puted

in
less

than
a

m
inute

using
sim

ilarhardw
are.

8
D

iscussion
and

C
onclusion

A
lthough

optim
altransportation

has
long

been
an

attractive
poten-

tial
technique

for
graphics

applications,
optim

ization
challenges

ham
pered

effortsto
include

itaspartofthe
standard

toolbox.C
onvo-

lutionalW
asserstein

distances
com

prise
a

large
step

tow
ard

closing
the

gap
betw

een
theory

and
practice.They

are
easily

com
putable

via
the

heatkernel—
a

w
ell-studied

and
w

idely-im
plem

ented
operator

in
graphics—

and
through

the
iterated

projection
algorithm

can
be

incorporated
into

m
odeling

problem
s

w
ith

transportation
term

s.

W
e

have
dem

onstrated
the

breadth
ofapplications

enabled
by

this
fram

ew
ork,from

rendering
to

im
age

processing
to

geom
etry.M

od-
eling

via
probability

distributions
is

natural
for

these
and

other
problem

s,
and

w
e

foresee
applications

across
several

additional
disciplines.

H
aving

reduced
the

costofexperim
enting

w
ith

trans-
portation

m
odels,future

studiesnow
m

ay
incorporate

transportation
into

graphics
applications

including
processing

ofvolum
etric

data,
caustic

design,dim
ensionality

reduction,and
sim

ulation.

Severaltheoreticaland
num

ericalproblem
s

rem
ain

open.The
regu-

larization
in

convolutionaltransportenables
scalable

com
putation

butintroduces
sm

oothing;im
aging

applications
like

those
in

[Zhu
etal.2014]require

sharp
edges

thatcan
getlost.A

s
itstands

now
,

w
hile

ourtechnique
outperform

sexisting
m

ethodsfortransportation
in

graphics,num
erics

degrade
if
�

is
too

sm
all,sim

ilarto
the

heat
kernelapproxim

ation
in

[C
rane

etal.2013];thisisthe
prim

ary
draw

-
back

ofourtransportapproxim
ation.M

odeling
w

ith
“true”

quadratic

Euclidean
barycenter

W
asserstein

barycenter

F
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1
2
:

Interpolating
indicators
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linear

com
binations

(left)
is

ineffective
for

shape
interpolation,butconvolutionalW
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(right)m
ove

features
by
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atching
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displacem

ent
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interpolation
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o
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ages;

w
hile
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less

sharp,
the

displacem
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resultcan
be

post-processed
using

sim
ple

im
age

filters
to

generate
a

nontrivialinterpolation
(bottom

;
see

e.g.the
tip
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“9”

character
rotating

outw
ard).

W
asserstein

distances
rem

ains
a

challenge
on

im
ages

and
triangle

m
eshes,and

large-scale
discretizations

offlow
m

odels
proposed

by
B

enam
ou

and
B

renier
[2000]

rem
ain

to
be

form
ulated.

C
loser

to
the

currentdiscussion,the
algorithm

forpropagation
in§6.3

m
ight

benefitfrom
preconditioners

spreading
inform

ation
non-locally

in
each

iteration;this
w

ould
alleviate

the
need

to
iterate|V|tim

es
to

guarantee
“com

m
unication”

betw
een

every
pairofvertices.

O
ptim

altransportation
provides

an
intuitive,foundationalapproach

to
geom

etric
problem

s
over

m
any

dom
ains.

Practical,
easily-

im
plem

ented
optim

ization
tools

like
the

ones
introduced

here
w

ill
enable

its
incorporation

into
graphics

pipelines
forcountless

tasks.
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Color Transfer
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Input measures:
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• Transportation-like Problems 

• Regularized Transport 

• Optimal Transport Barycenters 

• Heat Kernel Approximation



Optimal Transport on Surfaces

Triangulated mesh M .
Geodesic distance dM .



Optimal Transport on Surfaces

Level sets

xi

d(xi, ·)

Ground cost: c(x, y) = dM (x, y)

↵
.

Triangulated mesh M .
Geodesic distance dM .



Optimal Transport on Surfaces

Level sets

xi

d(xi, ·)
Computing c (Fast-Marching): N2

log(N) ! too costly.

Ground cost: c(x, y) = dM (x, y)

↵
.

Triangulated mesh M .
Geodesic distance dM .
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Entropic Transport on Surfaces
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Heat equation on M :
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Barycenter on a Surface
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Barycenter on a Surface
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Barycenter on a Surface

�1

� = (1, . . . , 1)/6
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µ5 µ6

µ1 µ2
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MRI Data Procesing [with A. Gramfort]

L2 barycenter

W 2
2 barycenter

Ground cost c = dM : geodesic on cortical surface M .
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M = sub-domain of R2
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J. Rabin Wasserstein Regularization

Histogram features in imaging
and machine learning.
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Entropic regularization for optimal transport.

Optimal transport framework Sliced Wasserstein projection Applications

Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer

J. Rabin Wasserstein Regularization

Histogram features in imaging
and machine learning.

Barycenters, unbalanced OT, gradient flows, . . .


