Numerical Optimal Transport and Applications

Gabriel Peyré

Joint works with:
Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, Justin Solomon

Histograms in Imaging and Machine Learning

Color histograms:

Input image

Histograms in Imaging and Machine Learning

Color histograms:

Histograms in Imaging and Machine Learning

Color histograms:

Bag of words:

Overview

- Transportation-like Problems

- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Radon Measures and Couplings

Positive Radon measures $\mathcal{M}_{+}(X)$: On a metric space (X, d).

Radon Measures and Couplings

Positive Radon measures $\mathcal{M}_{+}(X)$: On a metric space (X, d).

Probability measures. $\quad \mu(X)=1 \quad \int f=1 \quad \sum_{i} p_{i}=1$

Radon Measures and Couplings

Positive Radon measures $\mathcal{M}_{+}(X)$: On a metric space (X, d).

Probability measures. $\quad \mu(X)=1 \quad \int f=1 \quad \sum_{i} p_{i}=1$ Couplings: $\Pi(\mu, \nu) \stackrel{\text { def. }}{=}\left\{\pi \in \mathcal{M}_{+}(X \times X) ; P_{1 \sharp} \pi=\mu, P_{2 \sharp} \pi=\nu\right\}$ Marginals: $P_{1 \sharp} \pi(S) \stackrel{\text { def. }}{=} \pi(S, X) \quad P_{2 \sharp} \pi(S) \stackrel{\text { def. }}{=} \pi(X, S)$

Radon Measures and Couplings

Positive Radon measures $\mathcal{M}_{+}(X)$: On a metric space (X, d).

Probability measures. $\quad \mu(X)=1 \quad \int f=1 \quad \sum_{i} p_{i}=1$ Couplings: $\Pi(\mu, \nu) \stackrel{\text { def. }}{=}\left\{\pi \in \mathcal{M}_{+}(X \times X) ; P_{1 \sharp} \pi=\mu, P_{2 \sharp} \pi=\nu\right\}$ Marginals: $\quad P_{1 \sharp} \pi(S) \stackrel{\text { def. }}{=} \pi(S, X) \quad P_{2 \sharp} \pi(S) \stackrel{\text { def. }}{=} \pi(X, S)$

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]

$$
\min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]
$W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}$
For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein distance W_{α}.

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.

Optimal transport: [Kantorovitch 1942]

$$
W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein disstance W_{α}.
Linear programming:

$$
\mu=\sum_{i=1}^{N_{1}} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{N_{2}} p_{j} \delta_{y_{i}}
$$

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]

$$
W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein distance W_{α}.
Linear programming:

$$
\mu=\sum_{i=1}^{N_{1}} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{N_{2}} p_{j} \delta_{y_{i}}
$$

Hungarian/Auction: $\sim O\left(N^{3}\right)$
$\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \nu=\frac{1}{N} \sum_{j=1}^{N} \delta_{y_{j}}$

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]

$$
W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}
$$

For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein distance W_{α}.
Linear programming:

$$
\mu=\sum_{i=1}^{N_{1}} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{N_{2}} p_{j} \delta_{y_{i}}
$$

Hungarian/Auction: $\sim O\left(N^{3}\right)$
$\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \nu=\frac{1}{N} \sum_{j=1}^{N} \delta_{y_{j}}$
Monge-Ampère/Benamou-Brenier, $d=\|\cdot\|_{2}^{2}$.

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]
$W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}$
For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein distance W_{α}.
Linear programming:

$$
\mu=\sum_{i=1}^{N_{1}} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{N_{2}} p_{j} \delta_{y_{i}}
$$

Hungarian/Auction: $\sim O\left(N^{3}\right)$
$\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \nu=\frac{1}{N} \sum_{j=1}^{N} \delta_{y_{j}}$
Monge-Ampère/Benamou-Brenier, $d=\|\cdot\|_{2}^{2}$.
Semi-discrete: Laguerre cells, $d=\|\cdot\|_{2}^{2}$.

Optimal Transport

Ground cost $c(x, y)$ on $X \times X$.
Optimal transport: [Kantorovitch 1942]
$W_{\alpha}(\mu, \nu)^{\alpha} \stackrel{\text { def. }}{=} \min _{\pi}\left\{\langle c, \pi\rangle=\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) ; \pi \in \Pi(\mu, \nu)\right\}$
For $c(x, y)=d(x, y)^{\alpha}, \alpha$-Wasserstein distance W_{α}.
Linear programming:

$$
\mu=\sum_{i=1}^{N_{1}} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{N_{2}} p_{j} \delta_{y_{i}}
$$

Hungarian/Auction: $\sim O\left(N^{3}\right)$
$\mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \nu=\frac{1}{N} \sum_{j=1}^{N} \delta_{y_{j}}$
Monge-Ampère/Benamou-Brenier, $d=\|\cdot\|_{2}^{2}$.
Semi-discrete: Laguerre cells, $d=\|\cdot\|_{2}^{2}$.

Need for fast approximate algorithms for generic c.

Unbalanced Transport

$$
(\mu, \nu) \in \mathcal{M}_{+}(X) \quad \operatorname{KL}(\nu \mid \mu) \stackrel{\text { def. }}{=} \int_{X} \log \left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}\right) \mathrm{d} \mu+\int_{X}(\mathrm{~d} \mu-\mathrm{d} \nu)
$$

Unbalanced Transport

$$
\begin{gathered}
(\mu, \nu) \in \mathcal{M}_{+}(X) \quad \operatorname{KL}(\nu \mid \mu) \stackrel{\text { def. }}{=} \int_{X} \log \left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}\right) \mathrm{d} \mu+\int_{X}(\mathrm{~d} \mu-\mathrm{d} \nu) \\
W F_{c}(\mu, \nu) \stackrel{\text { def. }}{=} \min _{\pi}\langle c, \pi\rangle+\lambda \operatorname{KL}\left(P_{1 \sharp} \pi \mid \mu\right)+\lambda \mathrm{KL}\left(P_{2 \sharp} \pi \mid \nu\right)
\end{gathered}
$$

Unbalanced Transport

$$
(\mu, \nu) \in \mathcal{M}_{+}(X) \quad \mathrm{KL}(\nu \mid \mu) \stackrel{\text { def. }}{=} \int_{X} \log \left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}\right) \mathrm{d} \mu+\int_{X}(\mathrm{~d} \mu-\mathrm{d} \nu)
$$

$$
W F_{c}(\mu, \nu) \stackrel{\text { def. }}{=} \min _{\pi}\langle c, \pi\rangle+\lambda \mathrm{KL}\left(P_{1 \sharp} \pi \mid \mu\right)+\lambda \mathrm{KL}\left(P_{2 \sharp} \pi \mid \nu\right)
$$

Unbalanced Transport

$$
(\mu, \nu) \in \mathcal{M}_{+}(X) \quad \mathrm{KL}(\nu \mid \mu) \stackrel{\text { def. }}{=} \int_{X} \log \left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}\right) \mathrm{d} \mu+\int_{X}(\mathrm{~d} \mu-\mathrm{d} \nu)
$$

$W F_{c}(\mu, \nu) \stackrel{\text { def. }}{=} \min _{\pi}\langle c, \pi\rangle+\lambda \mathrm{KL}\left(P_{1 \sharp} \pi \mid \mu\right)+\lambda \mathrm{KL}\left(P_{2 \sharp} \pi \mid \nu\right)$
Proposition: If $c(x, y)=-\log \left(\cos \left(\min \left(\frac{d(x, y)}{\delta}, \frac{\pi}{2}\right)\right)\right.$
then $W F_{c}^{1 / 2}$ is a distance on $\mathcal{M}_{+}(X)$.
[Liereo, Mielke, Savaré 2015] [Chizat, Schmitzer, Peyré, Vialard 2015]

Unbalanced Transport

$$
(\mu, \nu) \in \mathcal{M}_{+}(X) \quad \mathrm{KL}(\nu \mid \mu) \stackrel{\text { def. }}{=} \int_{X} \log \left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}\right) \mathrm{d} \mu+\int_{X}(\mathrm{~d} \mu-\mathrm{d} \nu)
$$

$W F_{c}(\mu, \nu) \stackrel{\text { def. }}{=} \min _{\tau}\langle c, \pi\rangle+\lambda \mathrm{KL}\left(P_{1 \sharp} \pi \mid \mu\right)+\lambda \mathrm{KL}\left(P_{2 \sharp} \pi \mid \nu\right)$
Proposition: If $c(x, y)=-\log \left(\cos \left(\min \left(\frac{d(x, y)}{\delta}, \frac{\pi}{2}\right)\right)\right.$
then $W F_{c}^{1 / 2}$ is a distance on $\mathcal{M}_{+}(X)$.
[Liereo, Mielke, Savaré 2015] [Chizat, Schmitzer, Peyré, Vialard 2015]
\rightarrow "Dynamic" Benamou-Brenier formulation.
[Liereo, Mielke, Savaré 2015] [Chizat, Schmitzer, Peyré, Vialard 2015]
[Kondratyev, Monsaingeon, Vorotnikov, 2015]

Wasserstein Gradient Flows

Implicit Euler step:
[Jordan, Kinderlehrer, Otto 1998]

$$
\mu_{t+1}=\operatorname{Prox}_{\tau f}^{W}\left(\mu_{t}\right) \stackrel{\text { def. }}{=} \underset{\mu \in \mathcal{M}_{+}(X)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Wasserstein Gradient Flows

Implicit Euler step:
[Jordan, Kinderlehrer, Otto 1998]

$$
\mu_{t+1}=\operatorname{Prox}_{\tau f}^{W}\left(\mu_{t}\right) \stackrel{\text { def. }}{=} \underset{\mu \in \mathcal{M}_{+}(X)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Formal limit $\tau \rightarrow 0: \quad \partial_{t} \mu=\operatorname{div}\left(\mu \nabla\left(f^{\prime}(\mu)\right)\right)$

Wasserstein Gradient Flows

Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998]

$$
\mu_{t+1}=\operatorname{Prox}_{\tau f}^{W}\left(\mu_{t}\right) \stackrel{\text { def. }}{=} \underset{\mu \in \mathcal{M}_{+}(X)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Formal limit $\tau \rightarrow 0: \quad \partial_{t} \mu=\operatorname{div}\left(\mu \nabla\left(f^{\prime}(\mu)\right)\right)$
$f(\mu)=\int \log \left(\frac{\mathrm{d} \mu}{\mathrm{d} x}\right) \mathrm{d} \mu \longrightarrow \partial_{t} \mu=\Delta \mu$
(heat diffusion)

Wasserstein Gradient Flows

Implicit Euler step:
[Jordan, Kinderlehrer, Otto 1998]

$$
\mu_{t+1}=\operatorname{Prox}_{\tau f}^{W}\left(\mu_{t}\right) \stackrel{\text { def. }}{=} \underset{\mu \in \mathcal{M}_{+}(X)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Formal limit $\tau \rightarrow 0: \quad \partial_{t} \mu=\operatorname{div}\left(\mu \nabla\left(f^{\prime}(\mu)\right)\right)$
$f(\mu)=\int \log \left(\frac{\mathrm{d} \mu}{\mathrm{d} x}\right) \mathrm{d} \mu \longrightarrow \partial_{t} \mu=\Delta \mu$
$f(\mu)=\int w \mathrm{~d} \mu \longrightarrow \partial_{t} \mu=\operatorname{div}(\mu \nabla w)$
(heat diffusion)
(advection)

∇w

Evolution μ_{t}

Evolution μ_{t}

Wasserstein Gradient Flows

Implicit Euler step:
[Jordan, Kinderlehrer, Otto 1998]

$$
\mu_{t+1}=\operatorname{Prox}_{\tau f}^{W}\left(\mu_{t}\right) \stackrel{\text { def. }}{=} \underset{\mu \in \mathcal{M}_{+}(X)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Formal limit $\tau \rightarrow 0: \quad \partial_{t} \mu=\operatorname{div}\left(\mu \nabla\left(f^{\prime}(\mu)\right)\right)$
$f(\mu)=\int \log \left(\frac{\mathrm{d} \mu}{\mathrm{d} x}\right) \mathrm{d} \mu \longrightarrow \partial_{t} \mu=\Delta \mu$
(heat diffusion)
$f(\mu)=\int w \mathrm{~d} \mu \longrightarrow \partial_{t} \mu=\operatorname{div}(\mu \nabla w)$
(advection)
$f(\mu)=\frac{1}{m-1} \int\left(\frac{\mathrm{~d} \mu}{\mathrm{~d} x}\right)^{m-1} \mathrm{~d} \mu \longrightarrow \partial_{t} \mu=\Delta \mu^{m}$ (non-linear diffusion)

Evolution μ_{t}

Overview

- Transportation-like Problems
- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Transportation-like Problems

$$
\min _{1_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:

$$
f_{1}=\iota_{\mu}
$$

$$
f_{2}=\iota_{\nu}
$$

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:

$$
f_{1}=\iota_{\mu}
$$

$$
f_{2}=\iota_{\nu}
$$

$$
\text { Unbalanced transport: } \quad f_{1}=\lambda \mathrm{KL}(\cdot \mid \mu) \quad f_{2}=\lambda \mathrm{KL}(\cdot \mid \nu)
$$

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:

$$
f_{1}=\iota_{\mu}
$$

$$
f_{2}=\iota_{\nu}
$$

Unbalanced transport:
Gradient flows:
$f_{1}=\lambda \mathrm{KL}(\cdot \mid \mu)$
$f_{1}=\iota_{\mu_{t}}$
$f_{2}=f$
$f_{2}=\lambda \mathrm{KL}(\cdot \mid \nu)$

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:

$$
f_{1}=\iota_{\mu} \quad f_{2}=\iota_{\nu}
$$

$$
\text { Unbalanced transport: } \quad f_{1}=\lambda \mathrm{KL}(\cdot \mid \mu) \quad f_{2}=\lambda \mathrm{KL}(\cdot \mid \nu)
$$

Gradient flows:
$f_{1}=\iota_{\mu_{t}}$
$f_{2}=f$

Regularization: $\quad \min _{\pi} \mathcal{E}(\pi)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$
$\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right) \quad$ Regularization and positivity barrier.

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:

$$
f_{1}=\iota_{\mu}
$$

$$
f_{2}=\iota_{\nu}
$$

$$
\text { Unbalanced transport: } \quad f_{1}=\lambda \mathrm{KL}(\cdot \mid \mu) \quad f_{2}=\lambda \mathrm{KL}(\cdot \mid \nu)
$$

Gradient flows:
$f_{1}=\iota_{\mu_{t}}$
$f_{2}=f$

Regularization:

$$
\min _{\pi} \mathcal{E}(\pi)+\varepsilon \operatorname{KL}\left(\pi \mid \pi_{0}\right)
$$

$\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right) \leftharpoonup$ Discretization grid (prescribed support).

Transportation-like Problems

$$
\min _{\pi \in \mathcal{M}_{+}(X \times X)} \mathcal{E}(\pi) \stackrel{\text { def. }}{=}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)
$$

Optimal transport:
Unbalanced transport:
Gradient flows:

$$
f_{1}=\iota_{\mu}
$$

$$
f_{2}=\iota_{\nu}
$$

$$
f_{1}=\lambda \mathrm{KL}(\cdot \mid \mu) \quad f_{2}=\lambda \mathrm{KL}(\cdot \mid \nu)
$$

$f_{1}=\iota_{\mu_{t}}$
$f_{2}=f$
Regularization: $\operatorname{Prox}_{\mathcal{E} / \varepsilon}^{\mathrm{KL}}\left(\pi_{0}\right) \stackrel{\text { def. }}{=} \arg \min _{\pi} \mathcal{E}(\pi)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$
$\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right) \Longleftrightarrow$ Discretization grid (prescribed support).

Entropy Regularized Transport

$$
\pi_{\varepsilon} \stackrel{\text { def. }}{=} \operatorname{argmin}\left\{\langle c, \pi\rangle+\varepsilon \operatorname{KL}\left(\pi \mid \pi_{0}\right) ; \pi \in \Pi(\mu, \nu)\right\}
$$

Entropy Regularized Transport

$\pi_{\varepsilon} \stackrel{\text { def. }}{=} \operatorname{argmin}\left\{\langle c, \pi\rangle+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right) ; \pi \in \Pi(\mu, \nu)\right\}$ π

Schrödinger's problem: $\pi_{\varepsilon}=\operatorname{argmin} \operatorname{KL}(\pi \mid K)$ $\pi \in \Pi(\mu, \nu)$
Gibbs kernel: $K(x, y) \stackrel{\text { def. }}{=} e^{-\frac{c(x, y)}{\varepsilon}} \pi_{0}(x, y)$
Landmark computational paper: [Cuturi 2013].

Entropy Regularized Transport

$\pi_{\varepsilon} \stackrel{\text { def. }}{=} \operatorname{argmin}\left\{\langle c, \pi\rangle+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right) ; \pi \in \Pi(\mu, \nu)\right\}$ π

Schrödinger's problem: $\pi_{\varepsilon}=\operatorname{argmin} \operatorname{KL}(\pi \mid K)$ $\pi \in \Pi(\mu, \nu)$
Gibbs kernel: $K(x, y) \stackrel{\text { def. }}{=} e^{-\frac{c(x, y)}{\varepsilon}} \pi_{0}(x, y)$
Landmark computational paper: [Cuturi 2013].
Proposition:
[Carlier, Duval, Peyré, Schmitzer 2015]

$$
\pi_{\varepsilon} \xrightarrow{\varepsilon \rightarrow 0} \underset{\pi \in \Pi(\mu, \nu)}{\operatorname{argmin}}\langle c, \pi\rangle \quad \pi_{\varepsilon} \xrightarrow{\varepsilon \rightarrow+\infty} \mu(x) \nu(y)
$$

Dykstra-like Iterations

$$
\text { Primal: } \min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)
$$

Dykstra-like Iterations

$$
\text { Primal: } \min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)
$$

$$
\text { Dual: } \quad \max _{u, v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle
$$

Dykstra-like Iterations

Primal: $\min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$

Dual: $\quad \max _{u, v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle$

$$
\pi(x, y)=a(x) K(x, y) b(y) \quad(a, b)=\left(e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}\right)
$$

Dykstra-like Iterations

Primal: $\min _{\tau}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \operatorname{KL}\left(\pi \mid \pi_{0}\right)$
Dual: $\max _{u v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle$

$$
\pi(x, y)=a(x) K(x, y) b(y) \quad(a, b)=\left(e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}\right)
$$

Block coordinates $\max _{u}-f_{1}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{u}\right)$ relaxation:

Dykstra-like Iterations

Primal: $\min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$
Dual: $\quad \max _{u, v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle$

$$
\pi(x, y)=a(x) K(x, y) b(y) \quad(a, b)=\left(e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}\right)
$$

Block coordinates $\max _{u}-f_{1}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{u}\right)$

$$
\text { relaxation: } \quad \max _{v}-f_{2}^{*}(v)-\varepsilon\left\langle e^{\frac{v}{\varepsilon}}, K^{*} e^{-\frac{u}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{v}\right)
$$

Dykstra-like Iterations

Primal: $\min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$
Dual: $\quad \max _{u, v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle$

$$
\pi(x, y)=a(x) K(x, y) b(y) \quad(a, b)=\left(e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}\right)
$$

Block coordinates $\max _{u}-f_{1}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{u}\right)$ relaxation: $\quad \max _{v}-f_{2}^{*}(v)-\varepsilon\left\langle e^{\frac{v}{\varepsilon}}, K^{*} e^{-\frac{u}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{v}\right)$

Proposition: the solutions of $\left(\mathcal{I}_{u}\right)$ and $\left(\mathcal{I}_{v}\right)$ read:

$$
a=\frac{\operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(K b)}{K b} \quad b=\frac{\operatorname{Prox}_{f_{2} / \varepsilon}^{\mathrm{KL}}\left(K^{*} a\right)}{K^{*} a}
$$

$\operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(\mu) \stackrel{\text { def. }}{=} \operatorname{argmin}_{\nu} f_{1}(\nu)+\varepsilon \mathrm{KL}(\nu \mid \mu)$

Dykstra-like Iterations

Primal: $\min _{\pi}\langle c, \pi\rangle+f_{1}\left(P_{1 \sharp} \pi\right)+f_{2}\left(P_{2 \sharp} \pi\right)+\varepsilon \mathrm{KL}\left(\pi \mid \pi_{0}\right)$
Dual: $\max _{u, v}-f_{1}^{*}(u)-f_{2}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle$

$$
\pi(x, y)=a(x) K(x, y) b(y) \quad(a, b)=\left(e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}\right)
$$

Block coordinates $\max _{u}-f_{1}^{*}(u)-\varepsilon\left\langle e^{\frac{u}{\varepsilon}}, K e^{-\frac{v}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{u}\right)$ relaxation: $\quad \max _{v}-f_{2}^{*}(v)-\varepsilon\left\langle e^{\frac{v}{\varepsilon}}, K^{*} e^{-\frac{u}{\varepsilon}}\right\rangle \quad\left(\mathcal{I}_{v}\right)$

Proposition: the solutions of $\left(\mathcal{I}_{u}\right)$ and $\left(\mathcal{I}_{v}\right)$ read:

$$
\begin{aligned}
& a=\frac{\operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(K b)}{K b} \quad b=\frac{\operatorname{Prox}_{f_{2} / \varepsilon}^{\mathrm{KL}}\left(K^{*} a\right)}{K^{*} a} \\
& \operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(\mu) \stackrel{\text { def. }}{=} \operatorname{argmin}_{\nu} f_{1}(\nu)+\varepsilon \mathrm{KL}(\nu \mid \mu)
\end{aligned}
$$

\rightarrow Only matrix-vector multiplications. \rightarrow Highly parallelizable.
\rightarrow On regular grids: only convolutions! Linear time iterations.

Sinkhorn's Algorithm

Optimal transport problem: $f_{1}=\iota_{\mu} \longrightarrow \operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(\tilde{\mu})=\mu$

$$
f_{2}=\iota_{\nu} \longrightarrow \operatorname{Prox}_{f_{2} / \varepsilon}^{\mathrm{KL}}(\tilde{\nu})=\nu
$$

Sinkhorn's Algorithm

Optimal transport problem: $f_{1}=\iota_{\mu} \longrightarrow \operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(\tilde{\mu})=\mu$

$$
f_{2}=\iota_{\nu} \longrightarrow \operatorname{Prox}_{f_{2} / \varepsilon}^{\mathrm{KL}}(\tilde{\nu})=\nu
$$

Sinkhorn/IPFP algorithm: [Sinkhorn 1967][Deming,Stephan 1940]

$$
a^{(\ell+1)} \stackrel{\text { def. }}{=} \frac{\mu}{K b^{(\ell)}} \quad \text { and } \quad b^{(\ell+1)} \stackrel{\text { def. }}{=} \frac{\nu}{K^{*} a^{(\ell+1)}}
$$

Sinkhorn's Algorithm

Optimal transport problem: $\quad f_{1}=\iota_{\mu} \longrightarrow \operatorname{Prox}_{f_{1} / \varepsilon}^{\mathrm{KL}}(\tilde{\mu})=\mu$

$$
f_{2}=\iota_{\nu} \longrightarrow \operatorname{Prox}_{f_{2} / \varepsilon}^{\mathrm{KL}}(\tilde{\nu})=\nu
$$

Sinkhorn/IPFP algorithm: [Sinkhorn 1967][Deming,Stephan 1940]

$$
a^{(\ell+1)} \stackrel{\text { def. }}{=} \frac{\mu}{K b^{(\ell)}} \quad \text { and } \quad b^{(\ell+1)} \stackrel{\text { def. }}{=} \frac{\nu}{K^{*} a^{(\ell+1)}}
$$

Proposition: $\left\|\log \left(\pi^{(\ell)}\right)-\log \left(\pi^{\star}\right)\right\|_{\infty}=O(1-\delta)^{\ell}, \quad \delta \sim \kappa_{c}^{-1 / \varepsilon}$ $\pi^{(\ell)} \stackrel{\text { def. }}{=} \operatorname{diag}\left(a^{(\ell)}\right) K \operatorname{diag}\left(b^{(\ell)}\right)$
[Franklin,Lorenz 1989] Local rate: [Knight 2008]

Gradient Flows: Crowd Motion

$$
\mu_{t+1} \stackrel{\text { def. }}{=} \operatorname{argmin}_{\mu} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Congestion-inducing function:

$$
f(\mu)=\iota_{[0, \kappa]}(\mu)+\langle w, \mu\rangle
$$

[Maury, Roudneff-Chupin, Santambrogio 2010]

Gradient Flows: Crowd Motion

$$
\mu_{t+1} \stackrel{\text { def. }}{=} \operatorname{argmin}_{\mu} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Congestion-inducing function:

$$
f(\mu)=\iota_{[0, \kappa]}(\mu)+\langle w, \mu\rangle
$$

[Maury, Roudneff-Chupin, Santambrogio 2010]

$$
\text { Proposition: } \operatorname{Prox}_{\frac{1}{\varepsilon} f}(\mu)=\min \left(e^{-\varepsilon w} \mu, \kappa\right)
$$

Gradient Flows: Crowd Motion

$$
\mu_{t+1} \stackrel{\text { def. }}{=} \operatorname{argmin}_{\mu} W_{\alpha}^{\alpha}\left(\mu_{t}, \mu\right)+\tau f(\mu)
$$

Congestion-inducing function:

$$
f(\mu)=\iota_{[0, \kappa]}(\mu)+\langle w, \mu\rangle
$$

[Maury, Roudneff-Chupin, Santambrogio 2010]
Proposition: $\operatorname{Prox}_{\frac{1}{\varepsilon} f}(\mu)=\min \left(e^{-\varepsilon w} \mu, \kappa\right)$

$\kappa=2\left\|\mu_{t=0}\right\|_{\infty}$

$\kappa=4\left\|\mu_{t=0}\right\|_{\infty}$

Multiple-Density Gradient Flows

$$
\left(\mu_{1, t+1}, \mu_{2, t+1}\right) \stackrel{\text { def. }}{=} \underset{\left(\mu_{1}, \mu_{2}\right)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{1, t}, \mu_{1}\right)+W_{\alpha}^{\alpha}\left(\mu_{2, t}, \mu_{2}\right)+\tau f\left(\mu_{1}, \mu_{2}\right)
$$

Multiple-Density Gradient Flows

$$
\left(\mu_{1, t+1}, \mu_{2, t+1}\right) \stackrel{\text { def. }}{=} \underset{\left(\mu_{1}, \mu_{2}\right)}{\operatorname{argmin}} W_{\alpha}^{\alpha}\left(\mu_{1, t}, \mu_{1}\right)+W_{\alpha}^{\alpha}\left(\mu_{2, t}, \mu_{2}\right)+\tau f\left(\mu_{1}, \mu_{2}\right)
$$

Wasserstein attraction:

$$
f\left(\mu_{1}, \mu_{2}\right)=W_{\alpha}^{\alpha}\left(\mu_{1}, \mu_{2}\right)+h_{1}\left(\mu_{1}\right)+h_{2}\left(\mu_{2}\right)
$$

Example: $h_{i}(\mu)=\langle w, \mu\rangle$.

Multiple-Density Gradient Flows

$$
\left(\mu_{1, t+1}, \mu_{2, t+1}\right) \stackrel{\text { def. }}{=} \operatorname{argmin} W_{\alpha}^{\alpha}\left(\mu_{1, t}, \mu_{1}\right)+W_{\alpha}^{\alpha}\left(\mu_{2, t}, \mu_{2}\right)+\tau f\left(\mu_{1}, \mu_{2}\right)
$$

$$
\left(\mu_{1}, \mu_{2}\right)
$$

Wasserstein attraction:

$$
f\left(\mu_{1}, \mu_{2}\right)=W_{\alpha}^{\alpha}\left(\mu_{1}, \mu_{2}\right)+h_{1}\left(\mu_{1}\right)+h_{2}\left(\mu_{2}\right)
$$

Example: $h_{i}(\mu)=\langle w, \mu\rangle$.

Overview

- Transportation-like Problems
- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \underset{\mu}{\operatorname{argmin}} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \operatorname{argmin} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

$$
\mu
$$

Generalizes Euclidean barycenter:

$$
\text { If } \mu_{k}=\delta_{x_{k}} \text { then } \mu^{\star}=\delta_{\sum_{k} \lambda_{k} x_{k}}
$$

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \operatorname{argmin} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

$$
\mu
$$

Generalizes Euclidean barycenter:

$$
\text { If } \mu_{k}=\delta_{x_{k}} \text { then } \mu^{\star}=\delta_{\sum_{k} \lambda_{k} x_{k}}
$$

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \underset{\mu}{\operatorname{argmin}} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

Generalizes Euclidean barycenter:
If $\mu_{k}=\delta_{x_{k}}$ then $\mu^{\star}=\delta_{\sum_{k} \lambda_{k} x_{k}}$

Mc Cann's displacement interpolation.

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \operatorname{argmin} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

μ
Generalizes Euclidean barycenter: If $\mu_{k}=\delta_{x_{k}}$ then $\mu^{\star}=\delta_{\sum_{k} \lambda_{k} x_{k}}$

Mc Cann's displacement interpolation.

Wasserstein Barycenters

Barycenters of measures $\left(\mu_{k}\right)_{k}: \quad \sum_{k} \lambda_{k}=1$

$$
\mu^{\star} \in \underset{\mu}{\operatorname{argmin}} \sum_{k} \lambda_{k} W_{\alpha}^{\alpha}\left(\mu_{k}, \mu\right)
$$

Generalizes Euclidean barycenter: If $\mu_{k}=\delta_{x_{k}}$ then $\mu^{\star}=\delta_{\sum_{k} \lambda_{k} x_{k}}$

Mc Cann's displacement interpolation.
Theorem:
[Agueh, Carlier, 2010]
(for $c(x, y)=\|x-y\|^{2}$)
if μ_{1} does not vanish on small sets, μ^{\star} exists and is unique.

Regularized Barycenters

$$
\min _{\left(\pi_{k}\right)_{k}, \mu}\left\{\sum_{k} \lambda_{k}\left(\left\langle c, \pi_{k}\right\rangle+\varepsilon \mathrm{KL}\left(\pi_{k} \mid \pi_{0, k}\right)\right) ; \forall k, \pi_{k} \in \Pi\left(\mu_{k}, \mu\right)\right\}
$$

Regularized Barycenters

$$
\min _{\left(\pi_{k}\right)_{k}, \mu}\left\{\sum_{k} \lambda_{k}\left(\left\langle c, \pi_{k}\right\rangle+\varepsilon \mathrm{KL}\left(\pi_{k} \mid \pi_{0, k}\right)\right) ; \forall k, \pi_{k} \in \Pi\left(\mu_{k}, \mu\right)\right\}
$$

\longrightarrow Need to fix a discretization grid for μ, i.e. choose $\left(\pi_{0, k}\right)_{k}$

Regularized Barycenters

$$
\min _{\left(\pi_{k}\right)_{k}, \mu}\left\{\sum_{k} \lambda_{k}\left(\left\langle c, \pi_{k}\right\rangle+\varepsilon \mathrm{KL}\left(\pi_{k} \mid \pi_{0, k}\right)\right) ; \forall k, \pi_{k} \in \Pi\left(\mu_{k}, \mu\right)\right\}
$$

\longrightarrow Need to fix a discretization grid for μ, i.e. choose $\left(\pi_{0, k}\right)_{k}$
\longrightarrow Sinkhorn-like algorithm [Benamou, Carlier, Cuturi, Nenna, Peyré, 2015].

Regularized Barycenters

$$
\min _{\left(\pi_{k}\right)_{k}, \mu}\left\{\sum_{k} \lambda_{k}\left(\left\langle c, \pi_{k}\right\rangle+\varepsilon \mathrm{KL}\left(\pi_{k} \mid \pi_{0, k}\right)\right) ; \forall k, \pi_{k} \in \Pi\left(\mu_{k}, \mu\right)\right\}
$$

\longrightarrow Need to fix a discretization grid for μ, i.e. choose $\left(\pi_{0, k}\right)_{k}$
\longrightarrow Sinkhorn-like algorithm [Benamou, Carlier, Cuturi, Nenna, Peyré, 2015].

Color Transfer

Input images: (f, g) (chrominance components)
Input measures: $\mu(A)=\mathcal{U}\left(f^{-1}(A)\right), \nu(A)=\mathcal{U}\left(g^{-1}(A)\right)$

$$
f
$$

Color Transfer

Input images: (f, g) (chrominance components)
Input measures: $\mu(A)=\mathcal{U}\left(f^{-1}(A)\right), \nu(A)=\mathcal{U}\left(g^{-1}(A)\right)$
f

Color Transfer

Input images: (f, g) (chrominance components)
Input measures: $\mu(A)=\mathcal{U}\left(f^{-1}(A)\right), \nu(A)=\mathcal{U}\left(g^{-1}(A)\right)$

Color Harmonization

Raw image sequence

I

Color Harmonization

Raw image sequence

Compute
Wasserstein
barycenter

Project on the barycenter

Overview

- Transportation-like Problems
- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Optimal Transport on Surfaces

Triangulated mesh M.

Geodesic distance d_{M}.

Optimal Transport on Surfaces

Triangulated mesh M. Geodesic distance d_{M}. Ground cost: $c(x, y)=d_{M}(x, y)^{\alpha}$.

Optimal Transport on Surfaces

Triangulated mesh M. Geodesic distance d_{M}.
Ground cost: $c(x, y)=d_{M}(x, y)^{\alpha}$.

Computing c (Fast-Marching): $N^{2} \log (N) \rightarrow$ too costly.

Entropic Transport on Surfaces

Heat equation on $M: \partial_{t} u_{t}(x, \cdot)=\Delta_{M} u_{t}(x, \cdot), u_{t=0}(x, \cdot)=\delta_{x}$

Entropic Transport on Surfaces

Heat equation on $M: \partial_{t} u_{t}(x, \cdot)=\Delta_{M} u_{t}(x, \cdot), u_{t=0}(x, \cdot)=\delta_{x}$

$$
\text { Theorem: [Varadhan] } \quad-\varepsilon \log \left(u_{\varepsilon}\right) \xrightarrow{\varepsilon \rightarrow 0} d_{M}^{2}
$$

Entropic Transport on Surfaces

Heat equation on $M: \partial_{t} u_{t}(x, \cdot)=\Delta_{M} u_{t}(x, \cdot), u_{t=0}(x, \cdot)=\delta_{x}$

$$
\text { Theorem: [Varadhan] } \quad-\varepsilon \log \left(u_{\varepsilon}\right) \xrightarrow{\varepsilon \rightarrow 0} d_{M}^{2}
$$

Sinkhorn kernel: $\quad K \stackrel{\text { def. }}{=} e^{-\frac{d_{M}^{2}}{\varepsilon}} \approx u_{\varepsilon} \approx\left(\operatorname{Id}-\frac{\varepsilon}{\ell} \Delta_{M}\right)^{-\ell}$

Barycenter on a Surface

Barycenter on a Surface

Barycenter on a Surface

MRI Data Procesing [with A. Gramfort]

Ground cost $c=d_{M}$: geodesic on cortical surface M.

L^{2} barycenter

W_{2}^{2} barycenter

Gradient Flows: Crowd Motion with Obstacles

$M=$ sub-domain of \mathbb{R}^{2}.

$\kappa=\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=2\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=4\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=6\left\|\mu_{t=0}\right\|_{\infty} \operatorname{Potential} \cos (w)$

Gradient Flows: Crowd Motion with Obstacles

$M=$ sub-domain of \mathbb{R}^{2}.

$\kappa=\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=2\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=4\left\|\mu_{t=0}\right\|_{\infty} \quad \kappa=6\left\|\mu_{t=0}\right\|_{\infty} \operatorname{Potential} \cos (w)$

Crowd Motion on a Surface

$M=$ triangulated mesh.

$\kappa=\left\|\mu_{t=0}\right\|_{\infty}$

$\kappa=6\left\|\mu_{t=0}\right\|_{\infty}$

Potential $\cos (w)$

Crowd Motion on a Surface

$M=$ triangulated mesh.

$\kappa=\left\|\mu_{t=0}\right\|_{\infty}$

$\kappa=6\left\|\mu_{t=0}\right\|_{\infty}$

Potential $\cos (w)$

Conclusion

Histogram features in imaging and machine learning.

Conclusion

Histogram features in imaging and machine learning.

Entropic regularization for optimal transport.

Conclusion

Histogram features in imaging and machine learning.

Entropic regularization for optimal transport.

O. student-
 University Information On $_{3}$ Alumn Adninsions Events - Onlines

Barycenters, unbalanced OT, gradient flows,...

