Numerical Optimal Transport and Applications

Gabriel Peyré

Joint works with: Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, Justin Solomon

www.numerical-tours.com

Histograms in Imaging and Machine Learning

Color histograms:

Input image

Histograms in Imaging and Machine Learning

Color histograms:

optimal transport

Input image

Modified image

Histograms in Imaging and Machine Learning

Color histograms:

optimal transport

Input image

Modified image

Overview

Transportation-like Problems

- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

 $\boldsymbol{\mu}$

Ground cost
$$c(x, y)$$
 on $X \times X$.
Optimal transport: [Kantorovitch 1942]

$$\min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x, y) d\pi(x, y) \; ; \; \pi \in \Pi(\mu, \nu) \right\}$$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) d\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) d\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

For $c(x, y) = d(x, y)^{\alpha}$, α -Wasserstein distance W_{α} .

Linear programming: $\mu = \sum_{i=1}^{N_1} p_i \delta_{x_i}, \nu = \sum_{j=1}^{N_2} p_j \delta_{y_i}$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) d\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) d\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) \mathrm{d}\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

Ground cost c(x, y) on $X \times X$.

Optimal transport: [Kantorovitch 1942] $W_{\alpha}(\mu,\nu)^{\alpha} \stackrel{\text{def.}}{=} \min_{\pi} \left\{ \langle c, \pi \rangle = \int_{X \times X} c(x,y) \mathrm{d}\pi(x,y) \; ; \; \pi \in \Pi(\mu,\nu) \right\}$

 $(\mu,\nu) \in \mathcal{M}_+(X) \quad \operatorname{KL}(\nu|\mu) \stackrel{\text{def.}}{=} \int_X \log\left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right) \mathrm{d}\mu + \int_X (\mathrm{d}\mu - \mathrm{d}\nu)$

$$WF_c(\mu,\nu) \stackrel{\text{def.}}{=} \min_{\pi} \langle c, \pi \rangle + \lambda \text{KL}(P_{1\sharp}\pi|\mu) + \lambda \text{KL}(P_{2\sharp}\pi|\nu)$$

Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998] $\mu_{t+1} = \operatorname{Prox}_{\tau f}^{W}(\mu_{t}) \stackrel{\text{def.}}{=} \operatorname{argmin}_{\mu \in \mathcal{M}_{+}(X)} W_{\alpha}^{\alpha}(\mu_{t}, \mu) + \tau f(\mu)$

Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998] $\mu_{t+1} = \operatorname{Prox}_{\tau f}^{W}(\mu_{t}) \stackrel{\text{def.}}{=} \operatorname{argmin}_{\mu \in \mathcal{M}_{+}(X)} W^{\alpha}_{\alpha}(\mu_{t}, \mu) + \tau f(\mu)$

Formal limit $\tau \to 0$: $\partial_t \mu = \operatorname{div}(\mu \nabla(f'(\mu)))$

Implicit Euler step: [Jordan, Kinderlehrer, Otto 1998] $\mu_{t+1} = \operatorname{Prox}_{\tau f}^{W}(\mu_{t}) \stackrel{\text{def.}}{=} \operatorname{argmin}_{\mu \in \mathcal{M}_{+}(X)} W^{\alpha}_{\alpha}(\mu_{t}, \mu) + \tau f(\mu)$ Formal limit $\tau \to 0$: $\partial_{t}\mu = \operatorname{div}(\mu \nabla(f'(\mu)))$ $f(\mu) = \int \log(\frac{\mathrm{d}\mu}{\mathrm{d}x}) \mathrm{d}\mu \longrightarrow \partial_{t}\mu = \Delta\mu$ (heat diffusion)

Overview

Transportation-like Problems

- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport:

$$f_1 = \iota_\mu \qquad \qquad f_2 = \iota_\nu$$

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport: $f_1 = \iota_{\mu}$ $f_2 = \iota_{\nu}$ Unbalanced transport: $f_1 = \lambda \text{KL}(\cdot|\mu)$ $f_2 = \lambda \text{KL}(\cdot|\nu)$

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport: Unbalanced transport: Gradient flows:

$$f_1 = \iota_{\mu} \qquad f_2 = \iota_{\nu}$$

$$f_1 = \lambda \text{KL}(\cdot|\mu) \qquad f_2 = \lambda \text{KL}(\cdot|\nu)$$

$$f_1 = \iota_{\mu_t} \qquad f_2 = f$$

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport: $f_1 = \iota_{\mu}$ $f_2 = \iota_{\nu}$ Unbalanced transport: $f_1 = \lambda \text{KL}(\cdot|\mu)$ $f_2 = \lambda \text{KL}(\cdot|\nu)$ Gradient flows: $f_1 = \iota_{\mu_t}$ $f_2 = f$

Regularization:

$$\min_{\pi} \mathcal{E}(\pi) + \varepsilon \mathrm{KL}(\pi | \pi_0)$$

 $\varepsilon \operatorname{KL}(\pi|\pi_0)$ Regularization and positivity barrier.

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport: $f_1 = \iota_{\mu}$ $f_2 = \iota_{\nu}$ Unbalanced transport: $f_1 = \lambda \text{KL}(\cdot|\mu)$ $f_2 = \lambda \text{KL}(\cdot|\nu)$ Gradient flows: $f_1 = \iota_{\mu_t}$ $f_2 = f$

Regularization:

$$\min_{\pi} \mathcal{E}(\pi) + \varepsilon \mathrm{KL}(\pi | \pi_0)$$

 $\varepsilon \text{KL}(\pi|\pi_0) \xrightarrow{} \text{Regularization and positivity barrier.}$ $\varepsilon \text{KL}(\pi|\pi_0) \xrightarrow{} \text{Discretization grid (prescribed support).}$

$$\min_{\pi \in \mathcal{M}_+(X \times X)} \mathcal{E}(\pi) \stackrel{\text{def.}}{=} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi)$$

Optimal transport:
$$f_1 = \iota_{\mu}$$
 $f_2 = \iota_{\nu}$ Unbalanced transport: $f_1 = \lambda \text{KL}(\cdot|\mu)$ $f_2 = \lambda \text{KL}(\cdot|\nu)$ Gradient flows: $f_1 = \iota_{\mu_t}$ $f_2 = f$

Regularization:
$$\operatorname{Prox}_{\mathcal{E}/\varepsilon}^{\operatorname{KL}}(\pi_0) \stackrel{\text{\tiny def.}}{=} \operatorname{argmin}_{\pi} \mathcal{E}(\pi) + \varepsilon \operatorname{KL}(\pi|\pi_0)$$

Entropy Regularized Transport

 $\pi_{\varepsilon} \stackrel{\text{\tiny def.}}{=} \underset{\pi}{\operatorname{argmin}} \left\{ \langle c, \, \pi \rangle + \varepsilon \operatorname{KL}(\pi | \pi_0) \; ; \; \pi \in \Pi(\mu, \nu) \right\}$

Entropy Regularized Transport

 $\pi_{\varepsilon} \stackrel{\text{\tiny def.}}{=} \underset{\pi}{\operatorname{argmin}} \left\{ \langle c, \, \pi \rangle + \varepsilon \mathrm{KL}(\pi | \pi_0) \; ; \; \pi \in \Pi(\mu, \nu) \right\}$

Schrödinger's problem: $\pi_{\varepsilon} = \underset{\pi \in \Pi(\mu, \nu)}{\operatorname{argmin}} \operatorname{KL}(\pi|K)$

Gibbs kernel: $K(x, y) \stackrel{\text{def.}}{=} e^{-\frac{c(x, y)}{\varepsilon}} \pi_0(x, y)$ Landmark computational paper: [Cuturi 2013].

Entropy Regularized Transport

 π_{ε}

Schrödinger's problem: $\pi_{\varepsilon} = \underset{\pi \in \Pi(\mu, \nu)}{\operatorname{argmin}} \operatorname{KL}(\pi|K)$

Gibbs kernel: $K(x, y) \stackrel{\text{def.}}{=} e^{-\frac{c(x, y)}{\varepsilon}} \pi_0(x, y)$ Landmark computational paper: [Cuturi 2013].

Primal: $\min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \mathrm{KL}(\pi|\pi_0)$

Primal:
$$\min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \operatorname{KL}(\pi|\pi_0)$$

Dual: $\max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle$

Primal:
$$\min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \operatorname{KL}(\pi|\pi_0)$$

Dual: $\max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle$
 $\pi(x,y) = a(x)K(x,y)b(y)$ $(a,b) = (e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}})$

Primal:
$$\min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \operatorname{KL}(\pi|\pi_0)$$

Dual: $\max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle$
 $\pi(x,y) = a(x)K(x,y)b(y)$ $(a,b) = (e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}})$
Block coordinates $\max_u - f_1^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle$ (\mathcal{I}_u)
relaxation:

$$\begin{array}{l} Primal: \min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \mathrm{KL}(\pi|\pi_0) \\ \hline Dual: \max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle \\ \pi(x,y) = a(x)K(x,y)b(y) \qquad (a,b) = (e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}) \\ \hline Block \ coordinates \qquad \max_{u} - f_1^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle \qquad (\mathcal{I}_u) \\ \operatorname{relaxation:} \qquad \max_{v} - f_2^*(v) - \varepsilon \langle e^{\frac{v}{\varepsilon}}, K^*e^{-\frac{u}{\varepsilon}} \rangle \qquad (\mathcal{I}_v) \end{array}$$

$$\begin{array}{l} Primal: \min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \operatorname{KL}(\pi|\pi_0) \\ \hline Dual: \max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle \\ \hline \pi(x,y) = a(x)K(x,y)b(y) \quad (a,b) = (e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}) \\ \hline Block \ coordinates \quad \max_{u} - f_1^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle \quad (\mathcal{I}_u) \\ relaxation: \quad \max_{v} - f_2^*(v) - \varepsilon \langle e^{\frac{v}{\varepsilon}}, K^*e^{-\frac{u}{\varepsilon}} \rangle \quad (\mathcal{I}_v) \\ \hline Proposition: \ \text{the solutions of } (\mathcal{I}_u) \ \text{and } (\mathcal{I}_v) \ \text{read:} \\ a = \frac{\operatorname{Prox}_{f_1/\varepsilon}^{\operatorname{KL}}(Kb)}{Kb} \qquad b = \frac{\operatorname{Prox}_{f_2/\varepsilon}^{\operatorname{KL}}(K^*a)}{K^*a} \\ \operatorname{Prox}_{f_1/\varepsilon}^{\operatorname{KL}}(\mu) \overset{\text{def.}}{=} \operatorname{argmin}_{\nu} f_1(\nu) + \varepsilon \operatorname{KL}(\nu|\mu) \end{array}$$

$$\begin{array}{c|c} Primal: & \min_{\pi} \langle c, \pi \rangle + f_1(P_{1\sharp}\pi) + f_2(P_{2\sharp}\pi) + \varepsilon \mathrm{KL}(\pi|\pi_0) \\ \hline Dual: & \max_{u,v} - f_1^*(u) - f_2^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle \\ \hline \pi(x,y) = a(x)K(x,y)b(y) & (a,b) = (e^{-\frac{u}{\varepsilon}}, e^{-\frac{v}{\varepsilon}}) \\ \hline Block \ coordinates & \max_{u} - f_1^*(u) - \varepsilon \langle e^{\frac{u}{\varepsilon}}, Ke^{-\frac{v}{\varepsilon}} \rangle & (\mathcal{I}_u) \\ relaxation: & \max_{v} - f_2^*(v) - \varepsilon \langle e^{\frac{v}{\varepsilon}}, K^*e^{-\frac{u}{\varepsilon}} \rangle & (\mathcal{I}_v) \\ \hline Proposition: \ \text{the solutions of } (\mathcal{I}_u) \ \text{and } (\mathcal{I}_v) \ \text{read:} \\ & a = \frac{\mathrm{Prox}_{f_1/\varepsilon}^{\mathrm{KL}}(Kb)}{Kb} \qquad b = \frac{\mathrm{Prox}_{f_2/\varepsilon}^{\mathrm{KL}}(K^*a)}{K^*a} \\ \mathrm{Prox}_{f_1/\varepsilon}^{\mathrm{KL}}(\mu) \stackrel{\text{def.}}{=} \operatorname{argmin}_{v} f_1(\nu) + \varepsilon \mathrm{KL}(\nu|\mu) \\ \hline \end{array}$$

 \rightarrow Only matrix-vector multiplications. \rightarrow Highly parallelizable. \rightarrow On regular grids: only convolutions! Linear time iterations.

Sinkhorn's Algorithm

Optimal transport problem

$$m: \quad \begin{array}{l} f_1 = \iota_{\mu} \longrightarrow \operatorname{Prox}_{f_1/\varepsilon}^{\operatorname{KL}}(\tilde{\mu}) = \mu \\ f_2 = \iota_{\nu} \longrightarrow \operatorname{Prox}_{f_2/\varepsilon}^{\operatorname{KL}}(\tilde{\nu}) = \nu \end{array}$$

Sinkhorn's Algorithm

Sinkhorn's Algorithm

Gradient Flows: Crowd Motion

 $\overline{\mu_{t+1}} \stackrel{\text{\tiny def.}}{=} \operatorname{argmin}_{\mu} W^{\alpha}_{\alpha}(\mu_t, \mu) + \tau f(\mu)$

Congestion-inducing function: $f(\mu) = \iota_{[0,\kappa]}(\mu) + \langle w, \mu \rangle$ [Maury, Roudneff-Chupin, Santambrogio 2010]

Gradient Flows: Crowd Motion

 $\overline{\mu_{t+1}} \stackrel{\text{\tiny def.}}{=} \operatorname{argmin}_{\mu} W^{\alpha}_{\alpha}(\mu_t, \mu) + \tau f(\mu)$

Congestion-inducing function: $f(\mu) = \iota_{[0,\kappa]}(\mu) + \langle w, \mu \rangle$ [Maury Boudaeff Chupin Sentembrosic

[Maury, Roudneff-Chupin, Santambrogio 2010]

Proposition:
$$\operatorname{Prox}_{\frac{1}{\varepsilon}f}(\mu) = \min(e^{-\varepsilon w}\mu, \kappa)$$

Gradient Flows: Crowd Motion

 $\mu_{t+1} \stackrel{\text{def.}}{=} \operatorname{argmin}_{\mu} W^{\alpha}_{\alpha}(\mu_t, \mu) + \tau f(\mu)$

Congestion-inducing function: $f(\mu) = \iota_{[0,\kappa]}(\mu) + \langle w, \mu \rangle$

[Maury, Roudneff-Chupin, Santambrogio 2010]

Proposition:
$$\operatorname{Prox}_{\frac{1}{\varepsilon}f}(\mu) = \min(e^{-\varepsilon w}\mu, \kappa)$$

$$\nabla w$$

Multiple-Density Gradient Flows

 $(\mu_{1,t+1},\mu_{2,t+1}) \stackrel{\text{def.}}{=} \underset{(\mu_1,\mu_2)}{\operatorname{argmin}} W^{\alpha}_{\alpha}(\mu_{1,t},\mu_1) + W^{\alpha}_{\alpha}(\mu_{2,t},\mu_2) + \tau f(\mu_1,\mu_2)$

Multiple-Density Gradient Flows

 $(\mu_{1,t+1},\mu_{2,t+1}) \stackrel{\text{def.}}{=} \underset{(\mu_1,\mu_2)}{\operatorname{argmin}} W^{\alpha}_{\alpha}(\mu_{1,t},\mu_1) + W^{\alpha}_{\alpha}(\mu_{2,t},\mu_2) + \tau f(\mu_1,\mu_2)$

Wasserstein attraction: $f(\mu_1, \mu_2) = W^{\alpha}_{\alpha}(\mu_1, \mu_2) + h_1(\mu_1) + h_2(\mu_2)$

Example: $h_i(\mu) = \langle w, \mu \rangle$.

Multiple-Density Gradient Flows

 $(\mu_{1,t+1},\mu_{2,t+1}) \stackrel{\text{def.}}{=} \underset{(\mu_1,\mu_2)}{\operatorname{argmin}} W^{\alpha}_{\alpha}(\mu_{1,t},\mu_1) + W^{\alpha}_{\alpha}(\mu_{2,t},\mu_2) + \tau f(\mu_1,\mu_2)$

Wasserstein attraction: $f(\mu_1, \mu_2) = W^{\alpha}_{\alpha}(\mu_1, \mu_2) + h_1(\mu_1) + h_2(\mu_2)$

Example: $h_i(\mu) = \langle w, \mu \rangle$.

Overview

Transportation-like Problems

- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Barycenters of measures $(\mu_k)_k$: $\sum_k \lambda_k = 1$ $\mu^* \in \underset{\mu}{\operatorname{argmin}} \sum_k \lambda_k W^{\alpha}_{\alpha}(\mu_k, \mu)$

Barycenters of measures
$$(\mu_k)_k$$
: $\sum_k \lambda_k = 1$
 $\mu^* \in \underset{\mu}{\operatorname{argmin}} \sum_k \lambda_k W^{\alpha}_{\alpha}(\mu_k, \mu)$
Generalizes Euclidean barycenter:
If $\mu_k = \delta_{x_k}$ then $\mu^* = \delta_{\sum_k \lambda_k x_k}$
 μ_1
 Ψ_2
 Ψ_2
 Ψ_2
 μ_k
 Ψ_3

Barycenters of measures
$$(\mu_k)_k$$
: $\sum_k \lambda_k = 1$
 $\mu^* \in \underset{\mu}{\operatorname{argmin}} \sum_k \lambda_k W^{\alpha}_{\alpha}(\mu_k, \mu)$

Generalizes Euclidean barycenter:

If
$$\mu_k = \delta_{x_k}$$
 then $\mu^* = \delta_{\sum_k \lambda_k x_k}$

Generalizes Euclidean barycenter:

If
$$\mu_k = \delta_{x_k}$$
 then $\mu^* = \delta_{\sum_k \lambda_k x_k}$

Mc Cann's displacement interpolation.

Barycenters of measures
$$(\mu_k)_k$$
: $\sum_k \lambda_k = 1$
 $\mu^* \in \underset{\mu}{\operatorname{argmin}} \sum_k \lambda_k W^{\alpha}_{\alpha}(\mu_k, \mu)$
Generalizes Euclidean barycenter:
If $\mu_k = \delta_{x_k}$ then $\mu^* = \delta_{\sum_k \lambda_k x_k}$
 μ_1
Mc Cann's displacement interpolation.
Theorem: [Agueh, Carlier, 2010]
(for $c(x, y) = ||x - y||^2$)
if μ_1 does not vanish on small sets,
 μ^* exists and is unique.
 μ_1
 μ_2
 μ_3
 μ_4
 μ_4

 $\min_{(\pi_k)_k,\mu} \left\{ \sum_k \lambda_k \left(\langle c, \pi_k \rangle + \varepsilon \mathrm{KL}(\pi_k | \pi_{0,k}) \right) \; ; \; \forall k, \pi_k \in \Pi(\mu_k,\mu) \right\}$

 \rightarrow Need to fix a discretization grid for μ , i.e. choose $(\pi_{0,k})_k$

 \longrightarrow Need to fix a discretization grid for μ , i.e. choose $(\pi_{0,k})_k$

 \rightarrow Sinkhorn-like algorithm [Benamou, Carlier, Cuturi, Nenna, Peyré, 2015].

 \longrightarrow Need to fix a discretization grid for μ , i.e. choose $(\pi_{0,k})_k$ \longrightarrow Sinkhorn-like algorithm [Benamou, Carlier, Cuturi, Nenna, Peyré, 2015].

Color Transfer

Input images: (f,g) (chrominance components) Input measures: $\mu(A) = \mathcal{U}(f^{-1}(A)), \nu(A) = \mathcal{U}(g^{-1}(A))$

Color Transfer

Input images: (f,g) (chrominance components) Input measures: $\mu(A) = \mathcal{U}(f^{-1}(A)), \nu(A) = \mathcal{U}(g^{-1}(A))$

Color Transfer

Input images: (f,g) (chrominance components) Input measures: $\mu(A) = \mathcal{U}(f^{-1}(A)), \nu(A) = \mathcal{U}(g^{-1}(A))$

Color Harmonization

Raw image sequence

Color Harmonization

Raw image sequence Compute Wasserstein barycenter Project on the barycenter

Overview

Transportation-like Problems

- Regularized Transport
- Optimal Transport Barycenters
- Heat Kernel Approximation

Optimal Transport on Surfaces

Triangulated mesh M. Geodesic distance d_M .

Optimal Transport on Surfaces

Triangulated mesh M. Geodesic distance d_M . Ground cost: $c(x, y) = d_M(x, y)^{\alpha}$.

Optimal Transport on Surfaces

Triangulated mesh M. Geodesic distance d_M . Ground cost: $c(x, y) = d_M(x, y)^{\alpha}$.

Computing c (Fast-Marching): $N^2 \log(N) \to \text{too costly.}$

Entropic Transport on Surfaces

Heat equation on M: $\partial_t u_t(x, \cdot) = \Delta_M u_t(x, \cdot), \ u_{t=0}(x, \cdot) = \delta_x$

Entropic Transport on Surfaces

Heat equation on M: $\partial_t u_t(x, \cdot) = \Delta_M u_t(x, \cdot), \ u_{t=0}(x, \cdot) = \delta_x$

Theorem: [Varadhan] $-\varepsilon \log(u_{\varepsilon}) \xrightarrow{\varepsilon \to 0} d_M^2$

Entropic Transport on Surfaces

Heat equation on M: $\partial_t u_t(x, \cdot) = \Delta_M u_t(x, \cdot), \ u_{t=0}(x, \cdot) = \delta_x$

Theorem: [Varadhan] $-\varepsilon \log(u_{\varepsilon}) \xrightarrow{\varepsilon \to 0} d_M^2$

Barycenter on a Surface

Barycenter on a Surface

Barycenter on a Surface

MRI Data Procesing [with A. Gramfort]

Ground cost $c = d_M$: geodesic on cortical surface M.

 W_2^2 barycenter

Gradient Flows: Crowd Motion with Obstacles

M =sub-domain of \mathbb{R}^2 .

 $\kappa = \|\mu_{t=0}\|_{\infty}$ $\kappa = 2\|\mu_{t=0}\|_{\infty}$ $\kappa = 4\|\mu_{t=0}\|_{\infty}$ $\kappa = 6\|\mu_{t=0}\|_{\infty}$ Potential $\cos(w)$

Gradient Flows: Crowd Motion with Obstacles

M =sub-domain of \mathbb{R}^2 .

 $\kappa = \|\mu_{t=0}\|_{\infty}$ $\kappa = 2\|\mu_{t=0}\|_{\infty}$ $\kappa = 4\|\mu_{t=0}\|_{\infty}$ $\kappa = 6\|\mu_{t=0}\|_{\infty}$ Potential $\cos(w)$

Crowd Motion on a Surface

M =triangulated mesh.

Potential $\cos(w)$

Crowd Motion on a Surface

M =triangulated mesh.

Potential $\cos(w)$

Conclusion

Histogram features in imaging and machine learning.

Conclusion

Histogram features in imaging and machine learning.

Entropic regularization for optimal transport. $JJ_{M \times N}$ $\pi(x,y)\ln\pi(x,y)\,dx\,dy H(\pi) =$ $\pi(x,y)\,dx\,dyH(\pi)$ $\pi(x,y) \ln \pi(x,y) \, dx \, dy H(\pi)$ $\pi(x, y) dx dy H(\pi)$

Conclusion

 $\begin{array}{l} Histogram \ features \ in \ imaging \\ and \ machine \ learning. \end{array}$ $\begin{array}{l} Entropic \ regularization \ for \ optimal \ transport. \\ \pi(x,y) \ dx \ dyH(\pi) = - \iint_{M \times M} \pi(x,y) \ln \pi(x,y) \ dx \ dyH(\pi) = - \iint_{M \times M} \pi(x,y) \ dx \$

Barycenters, unbalanced OT, gradient flows, . . .