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The Problem

Problem: How to evaluate the performance (complexity) of an optimization
method for a given class of problems?

We focus on first order methods for smooth convex minimization

(M) min{f (x) : x ∈ Rd}, f convex and C1,1
L (Rd ).

Asssumption.
(M) is solvable, i.e., the optimal set X∗(f ) := argmin f is nonempty.

Given any starting point x0, ∃R > 0, such that ‖x0 − x∗‖ ≤ R, x∗ ∈ X∗(f ).

We completely depart from conventional approaches....
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Black-Box First Order Methods

A Black-box optimization method 1 is an algorithm A which has knowledge of:
– The underlying space Rd

– The family of functions F to be minimized

The function itself is not known.

To gain information on the objective function f to be minimized, the algorithm A
queries a subroutine which given an input point in Rd , returns the value of f and its
gradient f ′ at that point.

First Order Method: The Algorithm A
The algorithm starts with an initial point x0 ∈ Rd and generate a finite sequence of
points {xi : i = 1, . . .N} where at each step, the algorithm depends only on the
previous steps, their function values and gradients via some rule:

xi+1 = A(x0, . . . , xi ; f (x0), . . . , f (xi ); f ′(x0), . . . , f ′(xi )), i = 0, 1, . . . ,N − 1

Note that the algorithm has another implicit knowledge: ‖x0 − x∗‖ ≤ R.

1Oracle Model of Optimization – Nemirovsky-Yudin (83)
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Performance/Complexity of an Algorithm

We measure the worst-case performance (or complexity) of an algorithm A by
looking at the absolute inaccuracy

δ(f , xN) = f (xN)− f (x∗),

where xN is the output of the algorithm after making N calls to the oracle.

The worst-case is taken over all possible functions f ∈ F with starting points x0

satisfying ‖x0 − x∗‖ ≤ R, where x∗ ∈ X∗(f ).

Problem
We look at finding the maximal absolute inaccuracy over all possible inputs to the
algorithm.

This leads to the following....
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Main Observation

The worst-case performance of an optimization method is by itself an
optimization problem!

The Performance Estimation Problem – PEP
To measure the worst-case performance of an algorithm A we need to solve the
following Performance Estimation Problem (PEP):

max f (xN)− f (x∗)

s.t. f ∈ F ,
xi+1 = A(x0, . . . , xi ; f (x0), . . . , f (xi ); f ′(x0), . . . , f ′(xi )), i = 0, . . . ,N − 1,

x∗ ∈ X∗(f ), ‖x∗ − x0‖ ≤ R,

x0, . . . , xN , x∗ ∈ Rd .

(P)

PEP is an abstract optimization problem in infinite dimension : f ∈ F .

Clearly intractable!?!..
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A Methodology to Tackle PEP: Basic Un-Formal Approach

A. Relax the functional constraint (f ∈ F ) by new variables and constraints in Rd to
built a finite dimensional problem. This is done by:

1 Exploiting adequate properties of the class F at the points x0, . . . , xN , x∗ ∈ Rd .

2 Using the rule(s) describing the given algorithm A.

The resulting relaxed finite dimensional problem remains a valid upper bound on

f (xN)− f (x∗).

Yet, this problem remains nontrivial to tackle. So what else can be done...?

B. More Relaxations..!!...
1 For a given class of algorithms A: Exploit structures of PEP to simplify it.
2 Develop a novel relaxation technique and duality to find an upper bound to this

problem.

Despite "massive" relaxations: We derive new and better complexity bounds
than currently known.

In principle... this approach is universal. It can be applied to any optimization
algorithm...!
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Relaxing the functional constraint f ∈ F
We focus on First Order Methods (FOM) for smooth convex problem, that is:
convex f ∈ F ≡ C1,1

L .

We start with the following well known fact for convex f in F ≡ C1,1
L .

Proposition Suppose f : Rd → R is convex and has Lipschitz continuous gradient with
constant L. Then for every x , y ∈ Rd :

1
2L‖f

′(x)− f ′(y)‖2 ≤ f (x)− f (y)− 〈f ′(y), x − y〉. (1)

The relaxation scheme - a sort of “discretization"
Apply (1) at the points x0, . . . , xN and x∗.

Use the resulting inequalities as “constraints" instead of the functional constraint
f ∈ F .

Define
L‖x∗ − x0‖2δi := f (xi )− f (x∗), L‖x∗ − x0‖gi := f ′(xi ), i = 0, . . . ,N, ∗,

In terms of δi , gi , condition (1) becomes
1
2‖gi − gj‖2 ≤ δi − δj − 〈gj ,

xi−xj
‖x∗−x0‖

〉, i, j = 0, . . . ,N, ∗. (2)

We now treat x∗, {xi , δi , gi}N
i=0 as the optimization variables, instead of f ∈ C1,1

L .
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A (Relaxed) Finite Dimensional PEP

Replacing the constraint on f by the constraints (2) we reach a relaxed finite
dimensional PEP in the variables x∗, {xi , δi , gi}N

i=0:

(P)

max
x∗,xi ,gi∈Rd ,δi∈R

L‖x∗ − x0‖2δN

s.t. 1
2‖gi − gj‖2 ≤ δi − δj − 〈gj ,

xi−xj
‖x∗−x0‖

〉, i, j = 0, . . . ,N, ∗,

xi+1 = A(x0, . . . , xi ; δ0, . . . , δi ; g0, . . . , gi ), i = 0, . . . ,N − 1,

‖x∗ − x0‖ ≤ R.

Since (P) is a relaxation of the original maximization problem, its solution still provides
a valid upper bound on the complexity of the given method A:

f (xN)− f (x∗) ≤ val(P).

We will now show our main results for:
1 The gradient method.
2 A broad class of first order methods.
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PEP for the Gradient Method

Algorithm (GM)
0 Input: N, h, f ∈ C1,1

L (Rd ) convex, x0 ∈ Rd .

1 For i = 0, . . . ,N − 1, compute xi+1 = xi − h
L f ′(xi ), (h > 0).

After some transformations, PEP for (GM) is a Nonconvex Quadratic Problem:

(P)

max
gi∈Rd ,δi∈R

LR2δN

s.t. 1
2‖gi − gj‖2 ≤ δi − δj − 〈gj ,

∑j
t=i+1 hgt−1〉, i < j = 0, . . . ,N,

1
2‖gi − gj‖2 ≤ δi − δj + 〈gj ,

∑i
t=j+1 hgt−1〉, j < i = 0, . . . ,N,

1
2‖gi‖2 ≤ δi , i = 0, . . . ,N,
1
2‖gi‖2 ≤ −δi − 〈gi , ν +

∑i
t=1 hgt−1〉, i = 0, . . . ,N.

Notation: ν ∈ Rd is any unit vector;
i < j = 0, . . . ,N is a shorthand notation for i = 0, . . . ,N − 1, j = i + 1, . . . ,N.

“As is", PEP remains impossible to tackle..!?..We turn to the second phase:
Reformulation and more relaxations!
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Analyzing PEP for the Gradient Method

The main steps (see paper for details):

We further drop constraints... This is still a valid upper bound!

Reformulate it as a Quadratic Matrix (QM) Optimization Problem:

max
G∈R(N+1)×d ,δ∈RN+1

LR2δN

s.t. Tr(GT Ai−1,iG) ≤ δi−1 − δi , i = 1, . . . ,N,

Tr(GT DiG + νeT
i+1G) ≤ −δi , i = 0, . . . ,N,

(G′)

The matrices Ai−1,i ,Di ∈ SN+1 are explicitly given in terms of h.
( {ei+1}N

i=0 are the canonical unit vectors in RN+1 and ν ∈ Rd is a unit vector.)

To find an upper bound on problem G′ we use duality.

We further exploit the special structure of this (QM), and a dimension reduction
result, to derive a tractable SDP dual.
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A Dual Problem for the Quadratic Matrix Problem G′

min
λ∈RN ,t∈R

{1
2

LR2t : λ ∈ Λ, S(λ, t) � 0}, (DG′)

Λ := {λ ∈ RN : λi+1 − λi ≥ 0, i = 1, . . . ,N − 1, 1− λN ≥ 0, λi ≥ 0, i = 1, . . . ,N},

SN+2 3 S(λ, t) :=

(
(1− h)S0(λ) + hS1(λ) q

qT t

)
,

q := (λ1, λ2 − λ1, . . . , λN − λN−1, 1− λN)T and S0,S1 ∈ SN+1 are defined by:

S0(λ) =



2λ1 −λ1
−λ1 2λ2 −λ2

−λ2 2λ3 −λ3

. . .
. . .

. . .
−λN−1 2λN −λN

−λN 1


(3)

and

S1(λ) =


2λ1 λ2 − λ1 . . . λN − λN−1 1 − λN

λ2 − λ1 2λ2 λN − λN−1 1 − λN

...
. . .

...
λN − λN−1 λN − λN−1 2λN 1 − λN

1 − λN 1 − λN . . . 1 − λN 1

 . (4)
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A Feasible Analytical Solution of this SDP can be found!

A crucial and hard part of the proof!

Lemma

Let
t =

1
2Nh + 1

, and λi =
i

2N + 1− i
, i = 1, . . . ,N.

Then,

the matrices S0(λ),S1(λ) ∈ SN+1 defined in (3)–(4) are positive definite for every
N ∈ N.

The pair (λi , t) is feasible for DG′.

Equipped with this result, invoking standard duality leads to the desired complexity
result for GM.
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Complexity Bound for the Gradient Method

Theorem

Let f ∈ C1,1
L (Rd ) and let x0, . . . , xN ∈ Rd be generated by (GM) with 0 < h ≤ 1. Thena

f (xN)− f (x∗) ≤
LR2

4N + 2
. (5)

aThe classical bound on the gradient method: f (xN ) − f (x∗) ≤ LR2
2N .

We further prove that this bound is tight!
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The Bound is Tight

Theorem

Let L > 0, N ∈ N and d ∈ N. Then for every h > 0 there exists a convex function
ϕ ∈ C1,1

L (Rd ) and a point x0 ∈ Rd such that after N iterations, Algorithm GM reaches
an approximate solution xN with the following absolute inaccuracy

ϕ(xN)− ϕ∗ =
LR2

4Nh + 2
.

Interestingly...this ϕ is nothing else but the Moreau envelope of ‖x‖/(2Nh + 1)!

ϕ(x) =

{
1

2N+1‖x‖ −
1

2(2N+1)2 , ‖x‖ ≥ 1
2N+1 ,

1
2‖x‖

2, ‖x‖ < 1
2N+1 ,

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

with x0 = e1.
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A Conjecture for GM with 0 < h < 2

We conclude this part by raising a conjecture on the worst-case performance of the
gradient method with a constant step size 0 < h < 2.

Conjecture 1
Suppose the sequence x0, . . . , xN is generated by Algorithm GM with 0 < h < 2, then

f (xN)− f (x∗) ≤
LR2

2
max

(
1

2Nh + 1
, (1− h)2N

)
.

Note: when 0 < h ≤ 1 the bound above coincides with our previous bound.
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A Wide Class of First-Order Algorithms

Consider the following class of first-order algorithms:

Algorithm (FO)
0 Input: f ∈ C1,1

L (Rd ), x0 ∈ Rd .

1 For i = 0, . . . ,N − 1, compute xi+1 = xi − 1
L

∑i
k=0 h(i+1)

k f ′(xk ).

1 We now show that the class (FO) covers some fundamental schemes beyond the
gradient method.

2 For this class we establish a complexity bound that can be efficiently computed via
SDP solvers.

3 Furthermore, we derive an "optimized" algorithm of this form by finding optimal
step sizes h(i)

k .
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Example 1: the Heavy Ball Method

Example (The heavy ball method, HBM, Polyak (1964))
0 Input: f ∈ C1,1

L (Rd ), x0 ∈ Rd ,
1 x1 ← x0 − α

L f ′(x0), (α > 0).

2 For i = 1, . . . ,N − 1 compute: xi+1 = xi − α
L f ′(xi ) + β(xi − xi−1), (β > 0).

By recursively eliminating the term xi − xi−1 in the last step, we can rewrite step 2
as follows:

xi+1 = xi −
1
L

i∑
k=0

αβ i−k f ′(xk ),

hence this methods clearly fits in the class (FO).
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Example 2: Nesterov’s Fast Gradient Method

Example (Nesterov’s fast gradient method, FGM (1983))
0 Input: f ∈ C1,1

L (Rd ), x0 ∈ Rd ,
1 y1 ← x0, t1 ← 1,
2 For i = 1, . . . ,N compute:

1 xi ← yi − 1
L f ′(yi ),

2 ti+1 ←
1+

√
1+4t2

i
2 ,

3 yi+1 ← xi + ti−1
ti+1

(xi − xi−1).

This algorithm is as simple as the gradient method, yet achieves an optimal
convergence rate of O(1/N2):

f (xN)− f (x∗) ≤
2L‖x0 − x∗‖2

(N + 1)2 , ∀ x∗ ∈ X∗(f ); (3L/32, lower bound).

This algorithm includes 2 sequences of points (xi , yi ). At first glance, it does not
appear to belong to the class (FO)...

...It can be shown that the FGM fits in the class (FO), (see the paper ).
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PEP for the Wide Class of First-Order Algorithms (FO)

Applying our approach to FO, (as done for GM), we derive the following PEP:

max
gi∈Rd ,δi∈R

LR2δN

s.t. 1
2‖gi − gj‖2 ≤ δi − δj − 〈gj ,

∑j
t=i+1

∑t−1
k=0 h(t)

k gk 〉, i < j = 0, . . . ,N,
1
2‖gi − gj‖2 ≤ δi − δj + 〈gj ,

∑i
t=j+1

∑t−1
k=0 h(t)

k gk 〉, j < i = 0, . . . ,N,
1
2‖gi‖2 ≤ δi , i = 0, . . . ,N,
1
2‖gi‖2 ≤ −δi − 〈gi , ν +

∑i
t=1

∑t−1
k=0 h(t)

k gk 〉, i = 0, . . . ,N.

In this general case an analytical solution appears unlikely...

Nevertheless, using techniques similar to the ones used for GM, we establish a
dual bound that can be efficiently computed via any SDP solver.

More precisely, we obtain the following result.
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A Bound on Algorithm FO via Convex SDP

Theorem

Fix any N, d ∈ N. Let f ∈ C1,1
L (Rd ) be convex and suppose that x0, . . . , xN ∈ Rd are

generated by Algorithm FO, and that (DQ)’ is solvable. Then,

f (xN)− f (x∗) ≤ LR2B(h)

Here B(·) is the value of the Convex SDP (DQ’):

B(h) = min
λ,τ,t

1
2

LR2t

s.t.
(∑N

i=1 λi Ãi−1,i (h) +
∑N

i=0 τi D̃i (h) 1
2τ

1
2τ

T 1
2 t

)
� 0,

(λ, τ) ∈ Λ̃,

(DQ′)

Λ̃ := {(λ, τ) ∈ RN
+ ×RN+1

+ : τ0 = λ1, λi − λi+1 + τi = 0, i = 1, . . . ,N − 1, λN + τN = 1}.

and the matrices Ãi (h), D̃i (h) are explicitly given in terms of h ≡ (hi
k )0≤<k≤i≤N .

Note: The bound is independent of the dimension d .

Marc Teboulle (Tel Aviv University) Performance of first-order methods



Numerical Examples
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Heavy ball method, α=1 β=0.5

FGM − main sequence

FGM − auxiliary sequence

FGM − analytical bound

• FGM Analytical Bound = 2LR2

(N+1)2 . HBM is not competitive versus FGM
• Conjecture 2: f (xi ), f (yi ) converge to optimal value with same rate of convergence.

...Just proven by Kim-Fessler (2015).
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Finding an “Optimized" Algorithm

Given B(h), a natural question is:
how to find the “best" algorithm with respect to the bound? i.e., the best
step sizes. That is find h∗ = argminhB(h) which leads to the mini-max problem:

min
h(k)

k

max
xi ,gi∈Rd ,δi∈R

δN

s.t. 1
2L‖gi − gj‖2 ≤ δi − δj − 〈gj , xi − xj〉, i, j = 0, . . . ,N, ∗,

xi+1 = xi − 1
L

∑i
k=0 h(i+1)

k gk , i = 0, . . . ,N − 1,

‖x∗ − x0‖ ≤ R.

Once again, we face a challenging problem...

Using semidefinite relaxations, duality and linearization, a solution to this problem
can be efficiently approximated.
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An Optimized Algorithm – Solution step I

Remove some selected constraints and eliminate xi using the equality constraints:

min
h(k)

k

max
x·,gi∈Rd ,δi∈R

δN

s.t. 1
2L‖gi−1 − gi‖2 ≤ δi−1 − δi − 〈gi ,

∑i−1
k=0 h(i)

k gk 〉, i = 1, . . . ,N,

1
2L‖gi‖2 ≤ −δi − 〈gi , x∗ − x0 +

∑i
t=1

∑t−1
k=0 h(t)

k gk 〉, i = 0, . . . ,N,

‖x∗ − x0‖2 ≤ R2.

Take dual of the inner “max" problem, to obtain a Nonconvex (bilinear) SDP:

(BIL) min
h,λ,τ,t

{
1
2

t :

(∑N
i=1 λi Ãi (h) +

∑N
i=0 τi D̃i (h) 1

2τ
1
2τ

T 1
2 t

)
� 0, (λ, τ) ∈ Λ̃

}
,

Ãi (h) := 1
2 (ei − ei+1)(ei − ei+1)T + 1

2
∑i−1

k=0 h(i)
k (ei+1eT

k+1 + ek+1eT
i+1),

D̃i (h) := 1
2 ei+1eT

i+1 + 1
2
∑i

t=1
∑t−1

k=0 h(t)
k (ei+1eT

k+1 + ek+1eT
i+1)

Λ̃ :={(λ, τ) ∈ RN
+ × RN+1

+ : τ0 = λ1, λi − λi+1 + τi = 0, i = 1, . . . ,N − 1, λN + τN = 1}.
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Optimized Algorithm – Solution step II
Define a new variable (Linearize the bilinear nonconvex SDP):

ri,k = λih
(i)
k + τi

∑i
t=k+1 h(t)

k , i = 1, . . . ,N, k = 0, . . . , i − 1

to obtain a A Convex SDP:

(LIN) min
r,λ,τ,t

{
1
2

t :

(
S(r , λ, τ) 1

2τ
1
2τ

T 1
2 t

)
� 0, (λ, τ) ∈ Λ̃

}
,

where

S(r , λ, τ) = 1
2

∑N
i=1 λi (ei − ei+1)(ei − ei+1)T + 1

2

∑N
i=0 τiei+1eT

i+1

+ 1
2

∑N
i=1

∑i−1
k=0 ri,k (ei+1eT

k+1 + ek+1eT
i+1).

Theorem (Use the solution of (LIN) to solve (BIL) and get optimal h.)
Suppose (r∗, λ∗, τ∗, t∗) is an optimal solution for (LIN), then (h, λ∗, τ∗, t∗) is an optimal
solution for (BIL), where h = (h(i)

k )0≤k<i≤N is defined by the following recursive rule:

h(i)
k =


r∗i,k−τ

∗
i

∑i−1
t=k+1 h(t)

k
λ∗

i +τ∗i
λ∗i + τ∗i 6= 0

0 otherwise
, i = 1, . . . ,N, k = 0, . . . , i − 1.
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An Optimized Algorithm – Numerical Results
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Heavy ball method, α=1 β=0.5

FGM − main sequence

FGM − auxiliary sequence

FGM − analytical bound

Optimal algorithm

The bound on the new algorithm is two times better than the bound on Nesterov’s
FGM!
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An Optimized Algorithm –Example with N = 5

Example
A first-order algorithm with optimal step-sizes for N = 5:

x1 ← x0 − 1.6180
L f ′(x0)

x2 ← x1 − 0.1741
L f ′(x0)− 2.0194

L f ′(x1)

x3 ← x2 − 0.0756
L f ′(x0)− 0.4425

L f ′(x1)− 2.2317
L f ′(x2)

x4 ← x3 − 0.0401
L f ′(x0)− 0.2350

L f ′(x1)− 0.6541
L f ′(x2)− 2.3656

L f ′(x3)

x5 ← x4 − 0.0178
L f ′(x0)− 0.1040

L f ′(x1)− 0.2894
L f ′(x2)− 0.6043

L f ′(x3)− 2.0778
L f ′(x4)

We then get
f (x5)− f (x∗) ≤ 0.019× LR2 for any x∗ ∈ X∗(f ).
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Concluding Remarks and Extensions

The PEP framework offers a new approach to derive complexity bounds.

Finding a bound for the PEP problem is challenging!

Numerical bounds required solving SDP which dimension depends on N.

Two Very Recent Works Building on PEP:
Kim-Fessler (MP-2015) confirmed our Conjecture 2. Also derived an efficient
“Optimized" algorithm, with an analytical bound for the auxiliary sequence yk .

Taylor et al. (2015): Tightness of our relaxations and numerical bounds + smooth
strongly convex case.

Extensions: Analyze other algorithms (e.g., constraints – done for projected gradient),
and different classes F of input functions/optimization models...

PEP also useful as a constructive approach to design new algorithms....
In our Recent work on Nonsmooth problems we derive

an Optimal Kelley-Like Cutting Plane Method. [To appear in Math. Prog.]

Marc Teboulle (Tel Aviv University) Performance of first-order methods



Concluding Remarks and Extensions

The PEP framework offers a new approach to derive complexity bounds.

Finding a bound for the PEP problem is challenging!

Numerical bounds required solving SDP which dimension depends on N.

Two Very Recent Works Building on PEP:
Kim-Fessler (MP-2015) confirmed our Conjecture 2. Also derived an efficient
“Optimized" algorithm, with an analytical bound for the auxiliary sequence yk .

Taylor et al. (2015): Tightness of our relaxations and numerical bounds + smooth
strongly convex case.

Extensions: Analyze other algorithms (e.g., constraints – done for projected gradient),
and different classes F of input functions/optimization models...

PEP also useful as a constructive approach to design new algorithms....
In our Recent work on Nonsmooth problems we derive

an Optimal Kelley-Like Cutting Plane Method. [To appear in Math. Prog.]

Marc Teboulle (Tel Aviv University) Performance of first-order methods



Concluding Remarks and Extensions

The PEP framework offers a new approach to derive complexity bounds.

Finding a bound for the PEP problem is challenging!

Numerical bounds required solving SDP which dimension depends on N.

Two Very Recent Works Building on PEP:
Kim-Fessler (MP-2015) confirmed our Conjecture 2. Also derived an efficient
“Optimized" algorithm, with an analytical bound for the auxiliary sequence yk .

Taylor et al. (2015): Tightness of our relaxations and numerical bounds + smooth
strongly convex case.

Extensions: Analyze other algorithms (e.g., constraints – done for projected gradient),
and different classes F of input functions/optimization models...

PEP also useful as a constructive approach to design new algorithms....
In our Recent work on Nonsmooth problems we derive

an Optimal Kelley-Like Cutting Plane Method. [To appear in Math. Prog.]

Marc Teboulle (Tel Aviv University) Performance of first-order methods



HAPPY BIRTHDAY YURI !
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