
Sebastian	Pokutta
Georgia	Institute	of	Technology
School	of	Industrial	and	Systems	Engineering	(ISyE)	
Algorithms	and	Randomness	Center	(ARC)

An	introduction	to	Extended	Formulations	-
capturing	the	expressive	power	of	LPs	and	SDPs

Optimization	Without	Borders
Dedicated	to	Yuri	Nesterov’s 60th Birthday

Les	Houches,	2/2016



2

Introduction	and	Motivation

Can	we	invert	 the	process	to	find	
small	formulations	 for	complicated	problems?

Projections	can	drastically	increase	the	complexity	of	a	description.	



3

Introduction	and	Motivation

This	phenomenon	 is	well	known	(but	not	understood):

1. Quantifier	elimination

2. The	quest	of	P	vs.	NP	is	exactly	of	this	type:	𝒙 ∈ 𝑳 ⇔ ∃𝒚: 𝒇 𝒙, 𝒚 = 𝟏,	

3. Fourier-Motzkin elimination	 leads	to	exponential	blow-up

Extended	formulations	 =	quantifier	elimination	 backwards

Natural	questions.

1. Maybe	any 0/1	polytope	has	poly-size	extended	formulations?

2. ∃ problems	 in	P,	however	do	not	admit	small	formulations?

3. ∃ problems that	admit	good	approximations	via	small	SDPs	but	not	LPs?
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Introduction	and	Motivation

How	it	all	started…

In	86/87,	Swart	claimed	he	could	prove	𝑷 = 𝑵𝑷

How?

By	giving	a	(purported)	 poly-size	linear	program	for	the	TSP	problem.

Theorem. [Yannakakis 88/91]	Every	symmetric	LP	for	the	TSP	has	size	21(3).

Swart’s LP	was	symmetric	and	of	size	𝑝𝑜𝑙𝑦(𝑛) =>	it	was	wrong.
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Introduction	and	Motivation

However,	that	was	not	the	end	but	the	beginning.

1. [Kaibel,	Pashkovich,	Theis 10]	symmetry	can	make	a	huge	difference.

2. [Yannakakis 11]	(20	years	after	his	initial	proof):

3. Huge	interest	in	finally	ruling	 out	all	LPs	of	polynomial	 size	for	TSP.

4. [Fiorini,	Massar,	P.,	Tiwary,	de	Wolf	12]	The	TSP	polytope	has	no	small	LPs.

The	notion	 of	LP-complexity	(#inequalities)	 is	independentof	P	vs.	NP.	
=>	very	strong	indications	for	P	vs.	NP
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Problems	and	LPs

Disclaimer.	Similar	for	SDPs,	however	for	simplicity	confine	to	LPs.
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Approximation	Problems

An	approximation	problem	𝑷 (max	or	min	problem):

𝑆:	set	of	feasible	solutions
𝐹:	set	of	considered	objective	functions	 (for	 simplicity:	nonnegative)

𝜅:	completeness	guarantee,	𝜅(𝑓) ∈ ℝ for	each	𝑓 ∈ 𝐹
𝜏:	soundness	 guarantee,	𝜏(𝑓) ∈ ℝ for	each	𝑓 ∈ 𝐹

Example (exact	min	Vertex	Cover):	Given	a	graph	𝐺
𝑆:	all	vertex	covers	of	graph	𝐺 (i.e.,	subsets	of	nodes	covering	all	edges)

𝐹: all	nonnegative	weight	vectors	on	vertices
𝜅, 𝜏:	define	𝜅 𝑓 = 𝜏(𝑓) ≔ min

E∈F
𝑓(𝑠)

Goal.	Whenever	𝑓 ∈ 𝐹 with	max
E∈F

𝑓 𝑠 ≤ 𝜏 𝑓
Find:	approximate	solution	with	val ≤ 𝜅(𝑓) (max	problem)	
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An	LP	formulation	of	an	approximation	problem	𝑷 = 𝑺,𝑭, 𝜿,𝝉 is	an	LP	𝐴𝑥 ≤ 𝑏
with	𝑥 ∈ ℝT and	realizations,	where	𝐹U = {𝑓 ∈ 𝐹 ∣ max 𝑓 𝑠 ≤ 𝜏 𝑓 }

a)	Feasible	solutions:	 for	every	𝑠 ∈ 𝑆 we	have	xY ∈ ℝT with

𝐴𝑥E ≤ 𝑏 for	all	𝑠 ∈ 𝑆,	 (relaxation	𝑐𝑜𝑛𝑣(𝑥E ∣ 𝑠 ∈ 𝑆))

b)	Objective	functions: for	every	𝑓 ∈ 𝐹U we	have	an	affine 𝑤]:ℝT → ℝwith

𝑤] 𝑥E = 𝑓 𝑠 for	all	𝑠 ∈ 𝑆,	 (linearization	 that	is	exact	on	𝑆)

c)	Achieving	(κ, τ)-approximation: for	every	𝑓 ∈ 𝐹U
𝑓a = max 𝑤] 𝑥 𝐴𝑥 ≤ 𝑏 ≤ 𝜅(𝑓)

Model	of	[Chan,	 Lee,	Raghavendra,	Steurer	13]	and	[Braun,	P.,	Zink	14]

LPs	capturing	Approximation	Problems



Formulation	complexity.
• Independent	 of	P	vs.	NP
• Independent	 of	a	specific	 polyhedral	representation	
• Do	not	lift	given	representation	but	construct	the	optimal	LP	from	factorization
• In	fact:	LP	is	trivial.	Construct	 optimal	encoding	from	factorization
• Restricted	notion	of	nonnegative	matrix	factorization	to	support	 approximations
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Approximation	
Problem
𝑺, 𝑭, 𝜿, 𝝉

Slack	matrix	of	
problem

𝑀U	(𝑓, 𝑠) = 𝜅(𝑓) − 𝑓(𝑠)

LP	factorization
𝑀U = 𝑇 ⋅ 𝑈 + 𝜇 ⋅ 𝟏

(restr.	NMF)

Optimal	LP. 𝑥 ≥ 0 with	encodings
feasible	solutions: 𝑥E ≔ 𝑈E objective	functions:𝑤](𝑥) ≔ 𝜅(𝑓) − 𝜇 𝑓 − 𝑇] ⋅ 𝑥

Factorization	theorem. Let 𝑃 = 𝑆, 𝐹,𝜅, 𝜏	 be	a	problem	and	𝑀 slack	matrix	of	𝑃
𝑓𝑐 𝑃 = 𝑟𝑎𝑛𝑘pq(𝑀U)

Formulation	Complexity
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Optimal	LPs

𝑥 ≥ 0

𝑐𝑜𝑛𝑣{𝑥E ∣ 𝑠 ∈ 𝑆}

𝑤]r(𝑥) = 𝜅(𝑓s	 )− 𝜇 𝑓s − 𝑇]r𝑥

𝑤]t(𝑥) = 𝜅(𝑓u	 )− 𝜇 𝑓u − 𝑇]t 𝑥

non-optimal
for	all	foptimal

for	some	f
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Lower	bounding	techniques
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A	simple	lower	bounding	technique

The	rectangle	covering	bound.	

Consider	hypothetical	

𝑆 = 𝑇𝑈 (nonnegative	 rank-𝑟 factorization)

= ∑ 𝑇wwxs,…,z 𝑈w (sum	of	𝑟 nonneg. rank-1matrices)

Take	support

supp 𝑆 = ⋃ supp 𝑇w𝑈wwxs,…,z

= ⋃ supp 𝑇w ×supp(𝑈w)	wxs,…,z (union	 of	𝑟 rectangles)

Rectangle	covering	number. rc 𝑀 = min 𝑟	 	∃	𝑟-size	cover	of	supp(𝑀)}

⇒ 	rk� 𝑀 ≥ rc(𝑀)
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The	correlation	polytope	– an	example

[Razborov 92]	established	in	the	context	of	nondeterministic	 communication:

Theorem. 𝑟𝑐 UDISJ� = 2�3

This	implies	[Fiorini,	Massar,	P.,	Tiwary,	de	Wolf	12]

2�3 = 𝑟𝑐 UDISJ� ≤ 𝑟𝑘� UDISJ� ≤ 𝑟𝑘� 𝑀3 ≤ fc(COR 𝑛 )

Hardness	of	approximation via	

1. Communication	complexity	[Braun,	Fiorini,	 P.,	Steurer	12]	and	

2. Information	Theory	[Braverman,	Moitra	13]	and	[Braun,	P.	13].

Theorem. Any	LP	approximating	COR(𝑛) within	a	factor	𝑛s�� is	of	size	2�(s)�3.
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The	matching	problem	– a	much	more	complicated	case

Via	a	generalization	of	Razborov’s technique:

Theorem. [Rothvoss	14]	Any	LP	formulation	of	the	matching	polytope	 is	of	
exponential	size.

This	is	very	special	and	important:

1. Matching	can	be	solved	 in	polynomial	 time

2. Yet	any	LP	capturing	it	is	of	exponential	size

=>	Separates	the	power	of	P	from	polynomial	 size	LPs

With	information	 theory:	 ruling	out	the	existence	of	FPTAS-type	LP	formulations

Theorem. [Braun,	P.	14]	For	some	𝜀 > 0 any	LP	approximating	the	Matching	
Polytope	within	a	factor	1 + �

3
is	of	exponential	 size.
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Recent	results	for
SDP	extended	formulations
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Why	are	SDP	EFs	so	much	harder	to	understand?

…	because	they	are	so	much	stronger:

1. [Braun,	Fiorini,	 P.,	Steurer	12]:		∃ (bounded)	 spectrahedron
1. in	dimension	𝑛u ,	i.e.,	small	SDP-EF
2. any	LP	that	approximates	it	within	a	factor	of	𝑛s�� is	of	 size	21(3)

2. [Chain,	Lee,	Raghavendra,	Steurer	13]:	Separation	via	MaxCut
1. The	Goemans-Williams	SDP	gives	an	approximation	of	0.87
2. No	polynomial-size	LP	can	do	better	than	0.5

3. [Yannakakis 91]:	Stable	set	polytope	 over	perfect	graphs
1. Basic	SDP	gives	perfect	EF	of	 the	problem
2. No	polynomial	 size	LP	is	known;	best	known	𝑛�(��� 3)
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Known	SDP	EF	lower	bounds

Recent	SDP	EF	lower	bounds:

1. [Brïet,	Dadush,	P.	13]:	Via	counting	argument
1. There	exist	0/1	polytopes	 that	do	not	admit	poly-size	SDP	EFs
2. However,	argument	is	only	existential	in	nature	

2. [Lee,	Raghavendra,	Steurer	14]:	Bounds	via	(quantum)	 learning
1. Reuse	Lasserre	gap	instances	and	lower	bounds
2. Show	that	a	hypothetical	small	SDP	EF	can	be	used	to	learn	a	good	small	

Lasserre	based	SDP	EF	->	contradiction

3. [Braun,	Brown-Cohen,	Huq,	P.,	Raghavendra,	Roy,	Weitz,	Zink	15]:	Y.	for	SDPs
1. Matching	has	no	small	symmetric	SDPs
2. Among	all	symmetric	SDPs	of	 size	𝑂(𝑛w) for	TSP	𝑘-level	Lasserre	are	best

4. No	other	direct	/	explicit	lower	bounding	 techniques	are	known
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Reductions	for
for	extended	formulations

(reuse	what	you	know)



Reductions	between	Problems

In	complexity	theory.	How	to	show	that	a	problem	𝑃 is	NP-hard	(to	approximate)?
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Intuition. 𝑓 embeds	 instances	of	𝑄 into	𝑃.	Now	if	𝑃 would	be	easy,	then	together	
with	𝑓,	the	problem	𝑄 would	be	easy.	Contradiction	 to	hardness	of	𝑄.

P

Your	
Problem

Q

NP-hard
Problem

Reduction	f

Polynomial-time
computable	map

Note. Reduction	can	be	also	used	 in	reverse	to	establish	upper	bounds	 on	the	
complexity	of	𝑄 if	𝑃 is	known	to	be	easy.	



Reductions	for	EFs

Now	for	EFs.	How	to	show	that	a	problem	𝑃 does	not	admit	small	LPs?
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Intuition. 𝑓 embeds	 instances	of	𝑄 into	𝑃.	However,	somehow	this	has	to	preserve	the	
structure	of	being	an	LP	or	SDP…

P

Your	
Problem

Q

LP-hard
Problem

Reduction	f

Computationally	 unbounded
(we	care	only	for	#ineqs)
BUT	other restrictions…

Note. Reduction	can	be	also	used	 in	reverse	again.	This	can	lead	to	interesting	results.



Reductions	for	LPs	and	SDPs

Affine	reductions.𝑃s = 𝑆s,𝐹s,𝜅s, 𝜏s reduces	to	𝑃u = 𝑆u,𝐹u, 𝜅u,𝜏u via	two	maps

1. Rewrite	feasible	solutions: ∗:𝑆s → 𝑆u	with 𝑠s ↦ 𝑠s∗ ∈ 𝑆u
2. Rewrite	objective	functions: ∗:𝐹s → 𝐹u with	𝑓s ↦ 𝑓s∗ ∈ 𝐹u

So	that	the	following	holds:

𝜅s 𝑓s − 𝑓s 𝑠s = [𝜅u 𝑓s∗ − 𝑓s∗ 𝑠s∗ ]	 ⋅ 𝑀s(𝑓s, 𝑠s)+ 𝑀u(𝑓s, 𝑠s) (completeness)

max	𝑓s∗ ≤ 𝜏u 𝑓s∗ if				max	𝑓s ≤ 𝜏s 𝑓s	 (soundness)

Important. ∗maps	solutions	 and	functions	 independently	 of	each	other.
𝑀s,𝑀u ∈ 𝑅�z×T capture	low-rank	non-affine	part	of	function
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Theorem. [Braun,	P.,	Roy	15]	If	𝑃s reduces	to	𝑃u ,	then	(essentially)
fc 𝑃s ≤ 𝑟𝑎𝑛𝑘pq/F§q 𝑀s ⋅ fc(𝑃u)	+ 𝑟𝑎𝑛𝑘pq/F§q (𝑀u)

Enables	certain	forms	of	gap-amplification.



Reductions:	a	few	examples	(LP)
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*	Optimal	
‘	Have	been	also	obtained	directly	

MaxCut
1
2 + 𝜀

UniqueGames
𝜔(1)

Matching

1 +
𝜀
𝑛

Max3Sat*’
7
8 + 𝜀

Max2Sat*’
3
4 + 𝜀

[BPZ15]

Sparsest	Cut*
btw(supply)
2 − 𝜀

[BPR15]

[BPZ15]

Matching	(deg ≤ 3)
1 + �

3t

[BPR15]

[BPR15]

Stable	Set
𝜔(1)

Vertex	Cover*
2 − 𝜀

q-Vertex	Cover*
q− 𝜀

Sparsest	cut
btw(demand)

𝜔(1)

Bal.	separator
btw(demand)	 	

𝜔(1)

Bal.	separator
btw(supply)	
2 − 𝜀

1/Q	F-CSP
𝜔(1)

[BPR15]



Max-3-XOR/0
2 − 𝜀

MaxCut
15
16 + 𝜀

Sparsest	Cut
btw(demand)

𝑂(1)

Sparsest	Cut
btw(supply)
16/15− 𝜀

Sparsest	Cut
𝑂(1)

VertexCover
7
6 − 𝜀

Reductions:	a	few	examples	(SDP)

[Sch08]	+	[LRS14]

=>	Lasserre is suboptimal	for
Independent	Set

Max-k-CSP
1/𝑞w

(Ω(𝑛) rounds)

Independent	 Set
𝑛(s�®)

(Ω(𝑛	®)	rounds)
[BCV+12]

Lasserre
reduction
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Open	Problems

1. (general)	SDP	formulation	 complexity	of	the	matching	problem

2. Lower	bounding	 techniques	 for	SDP	EFs

3. LP-hardness	of	approximation	 for	complex	problems	such	e.g.,	TSP

4. Extension	complexity	over	alternative	cones:
1. Hyperbolic	programming	 (in	P)
2. Copositive programming	 (NP	hard)

5. Understanding	 the	difference	between	hierarchies	and	general	EFs



Thank	you!
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