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Introduction and Motivation

Projections can drastically increase the complexity of a description.
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Can we invert the process to find
small formulations for complicated problems?
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Introduction and Motivation

This phenomenon is well known (but not understood):
1. Quantifier elimination
2. The quest of P vs. NP is exactly of this type:

3. Fourier-Motzkin elimination leads to exponential blow-up

1. Maybe any 0/1 polytope has poly-size extended formulations?
2. 3 problems in P, however do not admit small formulations?
3. 3 problems that admit good approximations via small SDPs but not LPs?
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Introduction and Motivation

How it all started...
In 86/87, Swart claimed he could prove P = NP
How?

By giving a (purported) poly-size linear program forthe TSP problem.

Theorem. [Yannakakis 88/91] Every symmetric LP for the TSP has size 20m),

Swart’s LP was symmetric and of size poly(n) => it was wrong.

Georgia
Tech



Introduction and Motivation

However, that was not the end but the beginning.

1. [Kaibel, Pashkovich, Theis 10] symmetry can make a huge difference.

2. [Yannakakis 11] (20 years after his initial proof):

| believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging
task.

3. Huge interest in finally ruling out all LPs of polynomial size for TSP.

4. [Fiorini, Massar, P., Tiwary, de Wolf 12] The TSP polytope has no small LPs.

The notion of LP-complexity (#inequalities) is independent of P vs. NP.
=> very strong indications for P vs. NP
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Problems and LPs

Disclaimer. Similar for SDPs, however for simplicity confine to LPs.
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Approximation Problems

An (max or min problem):
S: set of feasible solutions
F: set of considered objective functions (for simplicity: nonnegative)
K: completeness guarantee, k(f) € Rforeachf € F
T: soundness guarantee, T(f) € Rforeachf € F

Whenever f € F with mEaSXf(S) < 7(f)
S

Find: approximate solution with val < k(f) (max problem)

(exact min Vertex Cover): Given a graph G
S: all vertex covers of graph G (i.e., subsets of nodes covering all edges)

F: all nonnegative weight vectors on vertices
Kk, T: define k(f) = t(f) = melgl f(s)
S
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LPs capturing Approximation Problems

Model of [Chan, Lee, Raghavendra, Steurer 13] and [Braun, P, Zink 14]
An isanLPAx < b
with x € R% and realizations, where E, = {f € F | max f(s) < t(f)}

a) Feasible solutions: for every s € S we have x° € R? with

Ax®* < b foralls €S, (relaxation conv(x® | s € 5))

b) Objective functions: for every f € E. we have an affine w/:R?* - R with

w/ (x5) = f(s) foralls€ S, (linearization that is exact on S)

c) Achieving (k, t)-approximation: for every f € F,
f=max{w/(x) | Ax < b} < k(f)
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Formulation Complexity

Slack matrix of LP factorization
problem M, =T-U+pu-1
M. (f,s)=k(f)— f(s) (restr. NMF)

Let P = (S, F,k,T ) be aproblem and M slack matrix of P
fe(P) = rank;p(M;)

* Independent of P vs. NP

* Independent of a specific polyhedral representation

* Do not lift given representation but construct the optimal LP from factorization
* Infact:LPis trivial. Construct optimal encoding from factorization

* Restricted notion of nonnegative matrix factorization to support approximations

x =0  with encodings
x* = U w! () = Kk(f) = u(f) =Ty - x
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Optimal LPs

non-optimal
optimal e el
for some f /

x=0
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w2 (x) = k(fy) — u(fz) — Ty X

wh(x) = k(fy) — u(fi) — 2
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Lower bounding techniques
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A simple lower boundingtechnique

The rectangle covering bound. 0 1 1 1 1
0 1 I 1
1 0 1

Consider hypothetical
P 1 11 0 1
S=TU (nonnegative rank-r factorization) 1 1 . 0

= 2k=1,...,er Uy (sum of r nonneg. rank-1 matrices)

Take support

supp(S) = Uj—y,...-supp(T*Uy)
= Upzr s supp(Tk)XSupp(Uk) (union of r rectangles)

Rectangle covering number. rc(M) = min{r | 3 r-size cover of supp(M)}
= 1k, (M) = rc(M)
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The correlation polytope — an example

[Razborov 92] established in the context of nondeterministic communication:
rc(UDIS],) = 2&"

This implies [Fiorini, Massar, P., Tiwary, de Wolf 12]

2" = yc(UDIS],) < rk, (UDIS],) < 1k, (M,) < fc(COR(R))

via
1. Communication complexity [Braun, Fiorini, P., Steurer 12] and

2. Information Theory [Braverman, Moitra 13] and [Braun, P. 13].

Any LP approximating COR(n) within a factor n' ¢ is of size 291,
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The matching problem —a much more complicated case

Via a generalization of Razborov’s technique:

[Rothvoss 14] Any LP formulation of the matching polytope is of
exponential size.

This is very special and important:
1. Matching can be solved in polynomial time
2. Yet any LP capturing it is of exponential size

=> Separates the power of P from polynomial size LPs
With information theory: ruling out the existence of FPTAS-type LP formulations

[Braun, P. 14] For some € > 0 any LP approximating the Matching
Polytope within a factor 1 +§ is of exponential size.
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Recent results for
SDP extended formulations
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Why are SDP EFs so much harder to understand?

1. [Braun, Fiorini, P., Steurer 12]: 3 (bounded) spectrahedron
1. in dimension n?,i.e., small SDP-EF

2. any LP that approximates it within a factor of n1 ¢ is of size 2%(%

2. [Chain, Lee, Raghavendra, Steurer 13]: Separation via MaxCut
1. The Goemans-Williams SDP gives an approximation of 0.87
2. No polynomial-size LP can do better than 0.5

3. [Yannakakis 91]: Stable set polytope over perfect graphs

1. Basic SDP gives perfect EF of the problem

2. No polynomial size LP is known; best known n®{°g™
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Known SDP EF lower bounds

1. [Briet, Dadush, P. 13]: Via counting argument
1. There exist 0/1 polytopes that do not admit poly-size SDP EFs
2. However, argument is only existential in nature

2. [Lee, Raghavendra, Steurer 14]: Bounds via (quantum) learning
1. Reuse Lasserre gap instances and lower bounds

2. Show that a hypothetical small SDP EF can be used to learn a good small
Lasserre based SDP EF -> contradiction

3. [Braun, Brown-Cohen, Hug, P., Raghavendra, Roy, Weitz, Zink 15]:Y. for SDPs
1. Matching has no small symmetric SDPs
2. Among all symmetric SDPs of size O(n’) for TSP k-level Lasserre are best

4. No other direct / explicit lower bounding techniques are known
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(reuse what you know)
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Reductions between Problems

In complexity theory. How to show that a problem P is NP-hard (to approximate)?

Reduction f
Your Polynomial-time NP-hard
Problem computable map Problem

Intuition. f embeds instances of Q into P. Now if P would be easy, then together
with f, the problem @Q would be easy. Contradiction to hardness of Q.

Note. Reduction canbe also used in reverse to establish upper bounds on the
complexity of Q if P is known to be easy.
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Reductions for EFs

Now for EFs. How to show that a problem P does not admit small LPs?

Reduction f
Your Computationally unbounded LP-hard
Problem (we care only for #ineqs) Problem
BUT other restrictions...

Intuition. f embeds instances of Q into P. However, somehow this has to preserve the

structure of being an LP or SDP...
Note. Reduction canbe also used in reverse again. This can lead to interesting results.
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Reductions for LPs and SDPs

P, = (§,,F;,k,,7,) reduces to P, = (S,,F,, k,,T,) via two maps
1. Rewrite feasible solutions: x:5, > S, withs; » s] €S,

2. Rewrite objective functions: x:F) = F, with f; » fi" € F,

So that the following holds:

k1 (fi) — fi(s) = [k, (F7) — fi° (5] - My (f1, s1) + My (fi,s1)  (completeness)
max fi" < 1,(f;") if maxf; < 1,(f}) (soundness)

* maps solutions and functions independently of each other.
M,,M, € R"*? capture low-rank non-affine part of function

[Braun, P., Roy 15] If P; reduces to P,, then (essentially)
fc(Py) < rankyp;spp(My) - fc(Py) + rankp spp (M;)
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Reductions: a few examples (LP)

[BPZ15] Max3Sat*’
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[BPZ15] Max2Sat™*’

3
Z+€

IS  Sparsest Cut®
btw(supply)
2—¢

[BPR15] 1/Q F-CSP
w(1)

UniqueGames

w(1)

[BPR15]

Matching [BPR15] EEVENCILE(EEEKY
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-rec" : “Have been also obtained directly

Stable Set
w(1)

Vertex Cover*
2—¢&

g-Vertex Cover*
q— ¢

Sparsest cut
btw(demand)

w(1)

Bal. separator
btw(demand)

w(1)

Bal. separator
btw(supply)
2—¢
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Reductions: a few examples (SDP)

Sparsest Cut
btw(demand)
0(1)

MaxCut Sparsest Cut
btw(supply)
161 16/15 — ¢

Max-3-XOR/0

2—¢

[Sch08] + [LRS14]

VertexCover Sparsest Cut
7 0(1)

E—E

Lasserre :
reduction |
I
] I Indepe(nldj;\t >et => Lasserreis suboptimalfor
' & Independent Set
I (Q(n?) rounds)
[BCV+12] |
I
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Open Problems

1. (general) SDP formulation complexity of the matching problem
2. Lower bounding techniques for SDP EFs
3. LP-hardness of approximation for complex problems such e.g., TSP

4. Extension complexity over alternative cones:
1. Hyperbolic programming (in P)
2. Copositive programming (NP hard)

5. Understanding the difference between hierarchies and general EFs
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Thank you!
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