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Quadratic maps

Have f: R™ — R™ of the form

f@) =(fi(@), ..., fm(@))

A=A e R™" b, € R",

or f: C* — R™ of the form

f@) =(fi(@),..., fm(@))

fi(w) = (Asw, 2)+(b], x)+(bs, %), i=1,...

A; = AF € T, b € C™.

Image sets in R™:

F={f(z): z € R")

or

F={f(x): € C"}

and

F.={f(x): v eR", |jz| <7}

r=1,....m<n
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Problems

Convexity /nonconvexity Is F' (or F,) convex or not?

If F'is convex, all related optimization problems are “good”.
Our approach: check convexity /nonconvexity for individual transformation.

Membership Oracle (= Feasibility problem). Given y € R™, check if y € F

— Solvability of system of quadratic equations.
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Applications — Optimization
General quadratic programming:
min fo(z)

st filx) <0,ie€l, fi(x)=0,i€J

If F' is convex + regularity conditions = duality theory holds.

Yakubovich, Vestnik LGU, 1973; Fradkov, Siberian Math. J., 1973

Boolean programming

r; ={-1,+1} <= 27 =1

Fradkov-

Convex relaxation for F' can be easily written: When is it tight? Shor 1986,

Nesterov, Beck, Teboulle ...

Pareto optimization: objective functions are linear/quadratic.
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Applications — Control

e S-theorem: When do the two quadratic inequalities imply the third one?

Originally — absolute stability. Lurie-Postnikov, 1944, Aizerman-Gantmacher,
1963; solution — Yakubovich 1971

Now S-theorem plays significant role in LMI techniques, in robustness analysis,

in quadratically constrained linear-quadratic theory.

e Structured singular value (p-analysis and synthesis.) Doyle, 1982, Packard-
Doyle, Automatica, 1993. Complex u, real p — different properties due to

convexity /nonconvexity of quadratic images.
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Applications — Physics

e Quantum systems. Detectability depends on convexity properties of quadratic
images.

e Power flow (PF) — feasibility of the desired regime; Optimal power flow (OPF):
Power network with n buses connected to loads or generators.
Variables: Active and reactive powers generated at buses and complex voltages
Constraints: Active and reactive loads
Cost functions: Quadratic functions of variables

Result: Zero duality gap under some conditions (J. Lavaei, S.H. Low, 2012)
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Convexity vs Nonconvexity
e Simplest example:
min(Az,z) s.t. |z||=1
This problem is nonconvex! However the closed-form solution is straightforward:

= eq,

where e is the eigenvector associated with the minimal eigenvalue of A

e Titles of papers:

— Hidden convezity in some nonconver quadratically constrained quadratic pro-

gramming [Ben-Tal, Teboulle, 1996]

— Permanently going back and forth between the “quadratic world” and the

“convexity world” in optimization [J.-B. Hiriart-Urruty, M. Tork, 2002]

e When the images of quadratic maps are convex?
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Simple Illustrations

The image F and Pareto set
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-1.2

Figure 1: n = m = 2: Image of unit circle (red) and of unit disk (blue), Pareto

boundary (green)
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Known Facts (Homogeneous forms)

Complex case — |Toeplitz, 1918; Hausdorff, 1919|: F} is convex for m = 2 (numerical

range); [Au-Yeng, Tsing 1983| same for m = 3.
Real case:
e m=2 —> F isconvex [Dines, 1941]
e m=2,n>3 — [} isconvex |[Brickman, 1961]
em=3,n>3)> ¢;A; -0 = F is convex [Calabi, 1982; Polyak, 1998]

e m is arbitrary, A; commute =—> F' is convex |Fradkov, 1973].
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Known Facts (Nonhomogeneous functions)

Complex case — F' is convex for m = 2.
Real case:
e m=2c1A1 +cAs -0 = F is convex [Polyak, 1998]

e m is arbitrary, A; have nonpositive off-diagonal entries, b; < 0 = Pareto set

of I is convex (F' + R is convex) [Zhang, Kim-Kojima, Jeyakumar a.o.]

e m is arbitrary, b; are linearly independent =— F,. is convex for r small

enough [Polyak, 2001] — “Small ball” theorem.
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Convex Hull (i)

The idea of convex relaxations for quadratic problems goes back to [Shor, 1986];
also see [Nesterov 1998], [Zhang 2000], [Beck and Teboulle, 2005].
Recent survey:

Luo, Ma, So, Ye, Zhang, Semidefinite relaxation of quadratic optimization problems,

IEEE Sig. Proc. Magazine, 2010.
Two typical results:

Lemma 1. For b; = 0 have
Conv(F,) = {A(X): X =0, TrX <r?},

where X = XT € R, AX) = ((A1, X), ..., (Am, X)), and (A, X) =TrAX.
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Convex Hull (ii)

Lemma 2. In the general case (b; # 0) have
G=Conv(F)={H(X): X =0, Xp41nt1 =1}

where X = X T € RvHDx(n+l) = 9y (X)) = (<H17X>7'°'7<HmaX>)T7

A; b

and H; =
b0

Idea of proof: (A;x,x) = (A;,zx') = (4;,X), X =0, rankX =1, TrX = ||z|%.

For z = (z;t) € R"*! have (H;z,z) = (A;x,z) + 2(b;, )t = fi(x) if t =1.
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Convexity /nonconvexity certificates

We focus on real nonhomogeneous case. Our goal is to provide convexity /nonconvexity
certificates for image of the individual quadratic map and feasibility /infeasibility cer-

tificate for the map and the point y. Notation:

ceR™, yeR"”, Ac) = ZCiAiab<C) = Zcz'buy(C) = Zciyi

bl 0 b(c)t 0
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Separating F' and y

Strict separation is possible if min e (c, f) = min,[(A(c)x, x) + 2(b(c), )] > (y, ¢)

for some c. This is equivalent to LMI

A(c)
b(c)"

b(c)

—1- (ya C)

?

0.
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Nonconvexity Certificate NC1

If LMI
A(c) =0
has no solutions in ¢ # 0 and F # R™, then F' is nonconvex.

Indeed a convex set either has a supporting hyperplane or coincides with the entire

space.

Example. tr A; = 0, A; are linearly independent. Then either /' = R™, or F' is

nNOoNncoNnvex.
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Infeasibility Certificate NF1

If LMI in c
A) ble) |
b(e)! —1—y(c)

= 0

is solvable, then equation f(x) =1y has no solution.

Remark. It F' is convex, this is necessary and sufficient condition.
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Nonconvexity Certificate NC1

Let m > 3, n >3, and let for some ¢, the matriz A(c) has simple zero eigenvalue
and eigenvector e such that A(c)e = 0,(b(c),e) = 0. Denote d = —A(c)"b(c),
to = ae+d, f* = f(z®) = £+ fla+ 2o IFI(F5 )] < [ [ £2], then F is
NONCONVEL.

Proof: Argmin(c, f) = f(x®), where f(x®) is 2-D parabola, which is nondegenerate

n
fer
due to the assumptions. Hence, the intersection of F' and the supporting hyperplane

(¢, f) = Const is nonconvex
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How to find such c¢?

Given y¥ € F and direction d, to find boundary oracle for y° + td € Conv(F) solve
min(t + (¢, 3"))

SN A() Sb(e)
UG

For d* random find “flat” part of the boundary w.p.1.

= 0,(c,d) = —1.
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Feasibility Certificate F1

Suppose y € Conv(F). Solve SDP in ¢, A\ > 0 with parameter r?

min(c, y)

A(c) + NI b(c)
HOT (ey) A

~ 0

Assume that the minimal eigenvalue of the matriz A(c*)+ \*I is positive. Calculate

p(r) = ||[(A(c*)+X*I)"tb(c*)|| and find minimal root of p(r) = r. If it exists, y € F.

Indeed, for this r > 0 the point y € dConv(F;.) and it is the unique minimizer of
(¢, f) on this set.

Hence, the supporting hyperplane has the unique intersection point both with F).

and its convex hull.
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Convexity certificate

Suppose matrix B with columns b;,1 = 1,...,m s full-rank and its smallest singular

value is o > 0. Denote L = /Y. ||A;||?, R = o/(2L). Then F, is strictly convex for

any 0 <r < R.

This is “small ball” theorem, [Polyak 2001]. There are better estimates for R —
[Dymarsky, 2016], [Xia, 2014].

If for some r in the previous test p(r) < r and r < R, then y € F.
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Possible extensions
e Some of functions are linear

F={f(x): Cx =d}.

e Complex case (important for power systems).

e Homogenous case (e.g. nonconvexity certificate for F,. can be specified — inter-

section of supporting hyperplane and F;. is 2-D ellipse).
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Example
3 buses (slack, PV, PQ), n = m = 4, borrowed from literature

Bus 2 Bus |
0.30 +70.40 =110

S,
0.70-70.30 Re(S,)=2.00

Bus 3 (Reference)
;=1.00£0

Nonconvexity detected!
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Other examples

Intensive numerical testing for checking convexity. For all examples were images
were known to be nonconvex, nonconvexity has been detected. For random data

nonconvexity is typical.
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Future Work

e From images to optimization

e Algorithms for high dimensions

e Feasibility problems more deeply

e “The best” inner convex approximation of F

e Cutting off “convex parts” of F'.
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