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Outline

Newton-like and quasi-Newton methods for convex stochastic
optimization problems using limited memory block BFGS
updates.

In the class of problems of interest, the objective functions
can be expressed as the sum of a huge number of functions of
an extremely large number of variables.

We present preliminary numerical results on problems from
machine learning.
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Stochastic optimization

Stochastic optimization

min f (x) = E[f (x , ξ)], ξ is random variable

Or finite sum (with fi (x) ≡ f (x , ξi ) for i = 1, . . . , n and very
large n)

min f (x) =
1

n

n∑
i=1

fi (x)

f and ∇f are very expensive to evaluate; e.g., SGD methods
randomly choose a random subset S ⊂ [n] and evaluate

fS(x) =
1

|S|
∑
i∈S

fi (x) and ∇fS(x) =
1

|S|
∑
i∈S
∇fi (x)

Essentially, only noisy info about f , ∇f and ∇2f is available

Challenge: how to design a method that takes advantage of
noisy 2nd-order information?
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Using 2nd-order information

Assumption: f (x) = 1
n

∑n
i=1 fi (x) is strongly convex and twice

continuously differentiable.

Choose (compute) a sketching matrix Sk (the columns of Sk
are a set of directions).

Following Byrd, Hansen, Nocedal and Singer, we do not use
differences in noisy gradients to estimate curvature, but rather
compute the action of the sub-sampled Hessian on Sk . i.e.,

compute Yk = 1
|T |

∑
i∈T ∇2fi (x)Sk , where T ⊂ [n].

We choose T = S
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block BFGS

Given Hk = B−1
k , the block BFGS method computes a ”least

change” update to the current approximation Hk to the inverse
Hessian matrix ∇2f (x) at the current point x , by solving

min ‖H − Hk‖
s.t., H = H>, HYk = Sk .

This gives the updating formula (analgous to the updates derived
by Broyden, Fletcher, Goldfarb and Shanno).

Hk+1 = (I−Sk [S>k Yk ]−1Y>k )Hk(I−Yk [S>k Yk ]−1S>k )+Sk [S>k Yk ]−1S>k

or, by the Sherman-Morrison-Woodbury formula:

Bk+1 = Bk − BkSk [S>k BkSk ]−1S>k Bk + Yk [S>k Yk ]−1Y>k
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Limited Memory Block BFGS

After M block BFGS steps starting from Hk+1−M , one can express
Hk+1 as

Hk+1 = VkHkV
T
k + SkΛkS

T
k

= VkVk−1Hk−1V
T
k−1Vk + VkSk−1Λk−1S

T
k−1V

T
k + SkΛkS

T
k

...

= Vk:k+1−MHk+1−MV T
k:k+1−M +

k+1−M∑
i=k

Vk:i+1SiΛiS
T
i V T

k:i+1,

where
Vk = (I − SkΛkY

T
k ) (1)

and Λk = (ST
k Yk)−1 and Vk:i = Vk · · ·Vi .
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Limited Memory Block BFGS

Hence, when the number of variables d is large, instead of
storing the d × d matrix Hk , we store the previous M block
curvature pairs

(Sk+1−M ,Yk+1−M) , . . . , (Sk ,Yk) ,

and the Cholesky factors of the matrices (ST
i Yi ) = Λ−1

i for
i = k + 1−M, . . . , k .

Then, analogously to the standard L-BFGS method, for any
vector v ∈ Rd , Hkv can be computed efficiently using a
two-loop block recursion (in Mp(4d + 2p) + O(p))
operations), if all Si ∈ Rd×p.

Intuition

Limited memory - least change aspect of BFGS is important

Each block update acts like a sketching procedure.
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Choices for the Sketching Matrix Sk

We employ one of the following strategies

Gaussian: Sk ∼ N (0, I ) has Gaussian entries sampled i.i.d at
each iteration.

Previous search directions si delayed: Store the previous L
search directions Sk = [sk+1−L, . . . , sk ] then update Hk only
once every L iterations.

Self-conditioning: Sample the columns of the Cholesky factors
Lk of Hk (i.e., LkL

T
k = Hk) uniformly at random. Fortunately

we can maintain and update Lk efficiently with limited
memory.

The matrix S is a sketching matrix, in the sense that we are
sketching the, possibly very large equation ∇2f (x)H = I to which
the solution is the inverse Hessian. Left multiplying by ST

compresses/sketches the equation yielding ST∇2f (x)H = ST .
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Stochastic Variance Reduced Gradients

Stochastic methods converge slowly near the optimum due to
the variance of the gradient estimates ∇fS(x); hence requiring
a decreasing step size.

We use the control variates approach of Johnson and Zhang
(2013) for a SGD method SVRG.

It uses ∇fS(xt)−∇fS(wk) +∇f (wk , where wk is a reference
point, in place of ∇fS(xt) .

wk , and the full gradient, are computed after each full pass of
the data, hence doubling the work of computing stochastic
gradients.

Other recently proposed SGD variance reduction techniques
such as SAG, SAGA, SDCA, and S2GD, can be used in place
of SVRG.
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The Basic Algorithm
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Algorithm 0.1: Stochastic Variable Metric Learning with SVRG

Input: H−1 ∈ Rd×d , w0 ∈ Rd , η ∈ R+, s = subsample size, q = sample
action size and m

1 for k = 0, . . . , max iter do
2 µ = ∇f (wk)
3 x0 = wk

4 for t = 0, . . . ,m − 1 do
5 Sample St , Tt ⊆ [n] i.i.d from a distribution S
6 Compute the sketching matrix St ∈ Rd×q

7 Compute ∇2fS(xt)St
8 Ht =update metric(Ht−1,St ,∇2fT (xt)St)
9 dt = −Ht (∇fS(xt)−∇fS(wk) + µ)

10 xt+1 = xt + ηdt
11 end
12 Option I: wk+1 = xm
13 Option II: wk+1 = xi , i selected uniformly at random from [m];

14 end
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Convergence - Assumptions

There exist constants λ,Λ ∈ R+ such that

f is λ–strongly convex

f (w) ≥ f (x) +∇f (x)T (w − x) +
λ

2
‖w − x‖2

2 , (2)

f is Λ–smooth

f (w) ≤ f (x) +∇f (x)T (w − x) +
Λ

2
‖w − x‖2

2 , (3)

These assumptions imply that

λI � ∇2fS(w) � ΛI , for all x ∈ Rd ,S ⊆ [n], (4)

from which we can prove that there exist constants γ, Γ ∈ R+

such that for all k we have

γI � Hk � ΓI . (5)
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Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w∗ be the unique
minimizer of f (w). Then in our Algorithm, we have for all k ≥ 0
that

Ef (wk)− f (w∗) ≤ ρkEf (w0)− f (w∗),

where the convergence rate is given by

ρ =
1/2mη + ηΓ2Λ(Λ− λ)

γλ− ηΓ2Λ2
< 1,

assuming we have chosen η < γλ/(2Γ2Λ2) and that we choose m
large enough to satisfy

m ≥ 1

2η (γλ− ηΓ2Λ(2Λ− λ))
,

which is a positive lower bound given our restriction on η.
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Upper and lower bounds on eigenvalues of Hk

Under the assumption that

λI � ∇2fT (x) � ΛI , ∀x ∈ Rd (6)

there exist constants γ, Γ ∈ R+ such that for all k we have

γI � Hk � ΓI . (7)

where

γ ≥ 1

1 + MΛ
, Γ ≤ (1 +

√
κ)2M(1+

1

λ(2
√
κ+ κ)

), κ ≡ Λ/λ.

(8)

Previously derived bounds depend on the problem dimension
d ; e.g. Γ ∼ ((d + M)κ)d+M
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Figure: gisette
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covtype-libsvm-binary d = 54, n = 581, 012
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Figure: covtype.libsvm.binary
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Higgs d = 28, n = 11, 000, 000
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Figure: HIGGS
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SUSY d = 18, n = 3, 548, 466
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Figure: SUSY
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epsilon-normalized d = 2, 000, n = 400, 000
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Figure: epsilon-normaliized
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rcv1-training d = 47, 236, n = 20, 242
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Figure: rcv1-train
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url-combined d = 3, 231, 961, n = 2, 396, 130
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Figure: url-combined
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Contributions

New metric learning framework. A block BFGS framework for
gradually learning the metric of the underlying function using
a sketched form of the subsampled Hessian matrix

New limited-memory block BFGS method. May also be of
interest for non-stochastic optimization

New limited-memory factored form block BFGS method.

Several sketching matrix possibilities.

Linear convergence rate proof for our methods.

Tighter upper and lower bounds on the eigenvalues of the
variable metric
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