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Background
[ ]

General CP methods

Problem: W* = min,x V(x).
@ X closed and convex.
@ VU is convex

Goal: to find an e-solution, i.e., x € X s.t. V(X)) — V* <e.

Complexity: the number of (sub)gradient evaluations of W —
@ W is smooth: O(1//¢).
@ W is nonsmooth: O(1/¢?).
@ V is strongly convex: O(log(1/e)).
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Background
°

Composite optimization problems

We consider composite problems which can be modeled as

W = min {W(x) = £(x) + h(x)}.

Here, 7 : X — R is a smooth and expensive term (data fitting),
h: X — R is a nonsmooth regularization term (solution
structures), and X is a closed convex set.

Three Challenging Cases

@ hor X are not necessarily simple.
@ f given by the summation of many terms.
@ f (or h) is possibly nonconvex.
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Complex composite problems

Existing complexity results

Problem: W* := min,cx {W(x) := f(x) + h(x)}.

First-order methods: iterative methods which operate with the
gradients (subgradients) of f and h.

Complexity: number of iterations needed to find an e-solution,
i.e,,apointx € X s.t. U(Xx) - V* <e.
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Complex composite problems

Existing complexity results

Problem: W* := min,cx {W(x) := f(x) + h(x)}.

First-order methods: iterative methods which operate with the
gradients (subgradients) of f and h.

Complexity: number of iterations needed to find an e-solution,
i.e,,apointx € X s.t. U(Xx) - V* <e.

Easy case: ' simple, = simple

Prx n(y) := argmin,.x||y — X||2 + h(x) is easy to compute (e.g.,
compressed sensing). Complexity: O(1/./¢) (Nesterov 07,
Tseng 08, Beck and Teboulle 09).

4/38



Complex composite problems
[ ]

More difficult cases

general,  simple

his a general nonsmooth function; Py := argmin,_ ||y — x| is
easy to compute. Complexity: O(1/¢?).
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structured, = simple
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Complex composite problems
[ ]

More difficult cases

general, = simple

his a general nonsmooth function; Py := argmin,_ ||y — x| is
easy to compute. Complexity: O(1/¢?).

| \

structured, = simple

his structured, e.g., h(x) = max,cy(Ax,y); Px is easy to
compute. Complexity: O(1/¢).

| A\

simple, = complicated

Lx p(y) := argmin,x(y, X) + h(x) is easy to compute (e.g.,
matrix completion).Complexity: O(1/¢).

A\
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Complex composite problems
L]

Motivation
h simple, X simple O(1/4/€) 100 ®
h general, X simple 0(1/) 108 @
hstructured, X simple  O(1/¢)  10* ©
h simple, X complicated O(1/¢)  10* ©

\ More general h or more complicated X ‘

J

\ Slow convergence of first-order algorithms ‘

J

‘ A large number of gradient evaluations of Vf ‘
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Complex composite problems
L]

Motivation
h simple, X simple O(1/+/€) 100 ©
h general, X simple O(1/e8) 108 @
hstructured, X simple ~ O(1/¢) 104 ©
h simple, X complicated O(1/¢) 104 ©

‘ More general h or more complicated X ‘

¢

‘ Slow convergence of first-order algorithms ‘

¥ ?

‘ A large number of gradient evaluations of Vf ‘

Question: Can we skip the computation of V1?
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Complex composite problems
[ ]

Composite problems

U* = minycx {V(x) := f(x) + h(x)} .

@ fis smooth,i.e., 9L > 0s.t. Vx,y € X,
IVi(y) = VExX)| < Llly — x|l.

@ his nonsmooth, i.e., IM > 0 s.t. Vx,y € X,
[h(x) — h(y)| < Mlly — x]|.

@ Py is simple to compute.

How many number of gradient evaluations of Vf and
subgradient evaluations of /" are needed to find an e-solution?

7/38



Complex composite problems
L]

Existing results

Existing algorithms evaluate Vf and /' together at each
iteration:

@ Mirror-prox method (Juditsky, Nemirovski and Travel, 11):
oft+ )

€

@ Accelerated stochastic approximation (Lan, 12):

TV 5]

Whenever the second term dominates, the number of gradient
evaluations V1 is given by O(1/¢?).
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Complex composite problems
[ ]

Bottleneck for composite problems

@ The computation of Vf, however, is often the bottleneck in
comparison with that of #'.

e The computation of Vf invovles a large data set, while that
of i’ only involves a very sparse matrix (e.g., total variation
minimization).

@ Can we reduce the number of gradient evaluations for Vf
from O(1/¢2) to O(1/./¢), while still maintaining the
optimal O(1/¢?) bound on subgradient evaluations for //?
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Complex composite problems
[ Je]

The gradient sliding algorithm

Algorithm 1 The gradient sliding (GS) algorithm

Input: Initial point xo € X and iteration limit N.
Let 5x > 0,7 > 0, and T, > 0 be given and set Xy = Xo.
fork =1,2,....N do
1. Set x; = (1 — )Xk 1 + Y Xk_1 and gx = VI(xy).
2. Set (Xk, Xx) = PS(Gks Xk—1. Bk Tk)-
3. Set Xx = (1 — k) Xk—1 + Vi Xk.
end for
Output: X.

PS: the prox-sliding procedure.
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Complex composite problems
oe

The  procedure

Procedure (x", X)) =PS(g,x, 3, T)

Let the parameters p; > 0 and 0; € [0, 1], { = 1,..., be given.
Set ug = Uy = x.
fort=1,2,...., T do
U = argmin,,cx (g + I (Us—1), u) + g
iy = (1 — Qt)ljl[,1 + B uy.
end for
Set x™ = urand X+ = Ur.

u—x|P+ B u— v 2,

Note: || - — - ||?/2 can be replaced by the more general
Bregman distance V(x, u) = w(u) — w(x) — (Vw(x), u — x).
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Complex composite problems
L]

Remarks

When supplied with g(-), x € X, 3, and T, the PS procedure
computes a pair of approximate solutions (x*, x") € X x X for
the problem of:

argmingcx { (U) = (9,0) + h(w) + §lu—xI2}.
In each iteration, the subproblem is given by

) B
argmin,,c {(Dk(u) = (VIf(xx),u) + h(u) + ?kHu — Xkyz} )
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Complex composite problems
[ ]

Convergence of the  proedure

If {p:} and {0:} in the PS procedure satisfy

2(t+1)
t(t+3)’

t
ptzé and 0; =

then forany t > 1 and u € X,

B(t+1)(t+2)
21(t + 3)

M? Bllug — ull?
HUt*UHZS + ” H

&(bp)—d(u)+ B(t+3) " t(t+3)
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Complex composite problems
[ ]

Convergence of the GS algorithm

Suppose that the previous conditions on {p;} and {6;} hold, and
that N is given a priori. If

2 NJk2
, and Ty = {MNNKW
DL2

for some D > 0, then

_ v¥|2 "
W(Ry) — W(x*) < N(NL+1) <3X° } Xl +2D>.

Remark: Do NOT need N given a priori if X is bounded.
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Complex composite problems
L]

Complexity of the GS algorithm

Denote Dy := maxy, ,cx ||x1 — x2|| and set D = 3D% /4.

The number of gradient evaluations of Vf is bounded by
3L0%

and the numlSer of subgradient evaluations of /' is given by
SN, Tk, which is bounded by

AMPD? /3LD?
= X + . X.

Consequence

Significantly reduce the number of gradient evaluations of V f
from O(1/¢?) to O(1/./¢), even though the whole objective
function W is nonsmooth in general.
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Complex composite problems
[ ]

Extensions

@ Gradient sliding for min,cx f(x) + h(x):

total iter. Vf
hgeneral nonsmooth  O(1/%)  O(1//¢)
h structured nonsmooth  O(1/¢)  O(1//¢)
f strongly convex O(1/e)  O(log(1/e€))

@ Conditional gradient sliding methods for problems with
more complicated feasible set.

total iter. (LO oracle) Vf
f convex O(1/e) O(1//e)
f strongly convex O(1/¢) O(log(1/¢))
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Finite-sum problems
[ ]

The problem of interest

Problem: W* := minycx {W(x) := Y}, £i(x) + h(X) + pw(x)}.
@ X closed and convex.
@ f; smooth convex: ||Vfi(x1) — Vii(x2)||« < Lj|lx1 — xaf|.
@ hsimple, e.g., /1 norm.
@ w strongly convex with modulus 1 w.r.t. an arbitrary norm.
@ 1 >0.
@ Subproblem argmin, (g, x) + h(x) + pw(x) is easy.
@ Denote f(x) = > 7" fi(x)and L = >"7", L;. f is smooth with

Lipschitz constant < L.
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Finite-sum problems
L]

Stochastic subgradient descent for nonsmooth
problems

@ General stochastic programming (SP): min,cx E:[F(x, &)].
@ Reformulation of the finite sum problem as SP:

@ lteration complexity: O(1/¢%) or O(1/¢) (1 > 0).
@ lteration cost: m times cheaper than deterministic
first-order methods.

@ Save up to a factor of O(m) subgradient computations.
@ For details, see Nemirovski et. al. (09).
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Finite-sum problems
[ ]

Required ’s in the smooth case

For simplicity, focus on the strongly convex case (i > 0).
Goal: find a solution X € X s.t. [[x — x*|| < ¢||x? — x7].

@ Nesterov’s optimal method (Nesterov 83):
L 1
O {m ~log ;} ;
@ Accelerated stochastic approximation (Lan 12, Ghadimi
and Lan 13):

O{ %Iog}+%§}

Note: the optimality of the latter bound for general SP does not
preclude more efficient algorithms for the finite-sum problem.

19/38



Finite-sum problems
o

Randomized incremental gradient methods

Each iteration requires a randomly selected Vfi(x).

@ Stochastic average gradient (SAG) by Schmidt, Roux and
Bach 13:
O ((m+L/u)logl).
@ Similar results were obtained in Johnson and Zhang 13,
Defazio et al. 14...

@ Worse dependence on the L/ than Nesterov’s method.
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Finite-sum problems
[ ]

Coordinate ascent in the dual

min {3°7",¢i(al x) + h(x)}, h strongly convex w.r.. I2 norm.
All these coordinate algorithms achieve O { o Llog ! }
@ Shalev-Shwartz and Zhang 13, 15 (restarting stochastic
dual ascent),

@ Lin, Lu and Xiao, 14 ( Nesterov, Fercog and P. Richtarik’s),
see also Zhang and Xiao 14 (Chambolle and Pock),

@ Dang and Lan 14 (non-strongly convex), O(1/¢) or
O(1/+/e).
Some issues:
@ Deal with a more special class of problems.
@ Require argmin{(g, y) + ¢:(y) + |l¥||?}, not incremental
gradient methods.
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Finite-sum problems
°

Open problems and our research

Problems:

@ Can we accelerate the convergence of randomized
incremental gradient method?

@ What is the best possible performance we can expect?
Our contributions:

@ A primal-dual gradient (PDG) method = a primal-dual look
to Nesterov’s method.

@ A randomized PDG (RPDG).

@ A new lower complexity bound.

@ A game-theoretic interpretation for acceleration.
Catalyst: Lin, Mairal, and Harchaoui 15.
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Finite-sum problems
[ ]

Reformulation and game/economic interpretation

Let J; be the conjugate function of 7. Consider
W= mingex { h(X) + pw(x) + maxgeg (X, g) — Jr(9) }

@ The buyer purchases products from the supplier.

@ The unit price is given by g € R".

@ X, hand w are constraints and other local cost for the
buyer.

@ The profit of supplier: revenue ((x, g)) - local cost J;(g).
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Finite-sum problems
L]

How to achieve equilibrium?

Current order quantity x°, and product price g°.
Proximity control functions:
P(X0.x) = w(x)— [w(x®) + (/(x0),x — x0)].
Di(gP.yi) = Jr(g) — [Ur(9°) + (Ji(9%). g — )]
Dual prox-mapping:
Mg(ij(v g07 T) ‘=arg rgnelg {<7)?v g> + Jf(g) + TDf(gov g)}
X is the given or predicted demand. Maximize the profit, but not
too far away from g°.

Primal prox-mapping:

Mix(g,x%,m) = argmin { (g, x) + h(x) + pw(x) + nP(x% x)}.
X

g is the given or predicted price. Minimize the cost, but not too

far way from x°.
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Finite-sum problems
[ ]

The deterministic PDG

Algorithm 2 The primal-dual gradient method

Let x° = x~! € X, and the nonnegative parameters {7}, {n;},
and {«;} be given.
Set g% = V{(x9).
fort=1,... kdo

Update z! = (x!, y!) according to

xt = (M{(Xt71 _ XPZ) +th1_

g = Mg(=X,g" ", 7).

xt = Mx(g',x" 1, n).
end for
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Finite-sum problems
[ ]

A game/economic interpretation

@ The supplier predicts the buyer's demand based on
historical information: x! = ay(x!=" — x'=2) 4 x'=1.

@ The supplier seeks to maximize predicted profit, but not too
far away from g'=': g = Mg(—X!, 9", 7).

@ The buyer tries to minimize the cost, but not too far away
from x'=1: x' = My (g%, x=1, ).
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Finite-sum problems
L]

PDG in gradient form

Algorithm 3 PDG method in gradient form

Input: Let x° = x~ ' € X, and the nonnegative parameters
{7t} {m:}, and {a;} be given.

Set x0 = x0.
fort=1,2,... kdo

XU = ay(xt=1 = xt72) 4 xt-1.
xt = (X'+7x71) /(1 + 7).
gt = VIHxD.

xt = Mx(g', x"" 1, ny).

end for

Idea: set J;(g' ") = x'" 1.
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Finite-sum problems
[ ]

Relation to Nesterov’s method

A variant of Nesterov’s method:

X = (1 - 6)x " 4 oxt .
xt = MX(Z;‘LVfi(Kt),th,m).

Xt = (1=0)X"1 +6x".

Note that

xt = (1= 00X+ (1 = 0)0ra (X' = x"72) + Opx" 1.

Equivalent to PDG with 7; = (1 —6;)/6; and o = 0;_1(1 —0:)/0:.

Nesterov’s acceleration: looking-ahead dual players.
Gradient descent: myopic dual players (a; = 7 = 0 in PDG).
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Finite-sum problems
L]

Convergence of PDG (or Nesterov’s variant)

Theorem
Define x* .= (3K ,6;) ", (6:x!). Suppose that

— ZiLf — — fry \' 2Lf//1 l
Tt = 7 7]1—\/2Lf/1,, af = o = 1+\/m, and 91‘ of
Then,

P(x*, x*) “T—lLf(ka(XO Xx*).

IA N

V() —w(x*) < p(l—a) [1+ 2+ L )}akP(XO,x*).

Theorem

| A

lfre =50 e =%, ap = 51, and 6; = t, then

w(;(k) - w(x*) < 7ty PO, x*).

N
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Finite-sum problems
[ ]

A multi-dual-player reformulation

@ Let J : )V — R be the conjugate functions of f; and )/},
i=1,..., m, denote the dual spaces.
MiNyex {h(x) + pw(x) +maxyey (X, > Vi) — > Ji(}’)} )
@ Define their new dual prox-functions and dual
prox-mappings as
Di(y,yi)) = i) = D) + R v = ),
My, (=%,y2,7) = arg }[@'5} {(=%,y) +Ji(yi) +TDi(y?, ¥)) } -
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Finite-sum problems
L]

The RPDG method

Algorithm 4 The RPDG method

Let x = x~' € X, and {t}, {n:}, and {a;} be given.
Set y? = Vii(x9), i=1,....m.
fort=1,... kdo

Choose i; according to Prob{i; =i} = p;, i=1,....,m.

XU = ap(xt71 — x172) 4 xt=1,
yt = /\/ly/(—)"(f,yif*ﬂﬂ)’ =1t
: yiti‘lv /# It.
yt _ pr1(th - }/,H) + y,-H, i =i,
' v, i+
xt = Mx(CE g x ).
end for
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Finite-sum problems
[ ]

RPDG in gradient form

Algorithm 5 RPDG
fort=1,... , kdo

Choose i; according to Prob{i; =i} = p;, i=1,....,m.

XU = ap(xt1 — xt72) 4 xt-1,
= {(1 + )7 ()N(tJthKfq), =1,
X = _ ..
xi 1, I # .
yo= Vii(xt), =i,
: yjt_17 I# if'

XU = M@+ (o, = DW=y X ).
g = g +yl-y
end for
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Finite-sum problems
L]

Game-theoretic interpretation for RPDG

@ The suppliers predict the buyer's demand as before.

@ Only one randomly selcted supplier will change his/her
price, arriving at y'.

@ The buyer would have used y! as the price, but the

algorithm converges slowly (a worse depedence on m)
(Dang and Lan 14).

@ Add a dual prediction (estimation) step, i.e., j/’ s.t.
E[[j/it] - .}A/jt! where j}it = Myi(i)”(ts y/ti‘l ) Tjt)'
@ The buyer uses ' to determine the order quantity.
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Finite-sum problems
[ ]

Rate of Convergence

LetC:%.and
pi = Prob{it:i}:ﬁJr—’L,i:L...,m,

_ . 1 ’
A= T T )+ /(m—1)2+4mC"
Then
E[P(xk, x*)] (1—1—3Lf)akP(x° X*),

1

E[W(X)] —v* < ok2(1 —a)”

IA

u+ 2L + P(xo,x*).
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Finite-sum problems
o

The iteration complexity of RPGD

@ Tofind a point X € X st. E[P(X,x*)] < e
O{(m+ )Iogr(x’()”

@ Tofind a pomt x € X st Prob{P(x,x*) < e} >1— \for
some )\ € (0, 1):
0 y*
@ {(m+ L) log [LXA;X )} }
@ Similar results hold for the ergodic sequence in terms of
function values.
@ A factor of up to O {min{\/%, \/ﬁ}} savings on gradient

computation (or price changes), at the price of more order
transactions.
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Finite-sum problems

Lower complexity bound

MiN, crA i1, m (W) =0 (i) + 5lxl5] } -

fi(x;) = ) [1(Ax, ;) — (e1,x)] . A = n/m,

2 1.0 0 0 0 0
1 2 -1 0 0 0 0 -
A= ... ... . e o — VO3
O+1
0 0 0 0 1 2 1 Vet
0 0 0 0 0 -1 =&

Denote q = (/O — 1)/(\/Q + 1). Then the iterates {x*}
generated by a randomized incremental gradient method must

. E K__ y*||2
satisfy H > Lexp (_W;f1—\§2§—41\@> for any

n> n(m. k) = [mlog [ (1 - (1 - ¢2)/m)" /2]]/(2log g).
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Finite-sum problems

Complexity

The number of gradient evaluations performed by a randomized
incremental gradient method for finding a solution x € X s.t.
E[||x — x*[|3] < e cannot be smaller than

{(F I m) log X~ ”2} if n is sufficiently large.

Other results in the paper
@ Generalization to problems without strong convexity.

@ Lower complexity bound for randomized coordinate
descent methods.
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Summary
[ ]

What’s new?

@ Gradient sliding algorithms for complex composite
optimization.
@ Saving gradient computation significantly without increasing
# of iterations.
@ An optimal randomized incremental gradient for finite-sum
optimization.
@ Saving gradient computation at the expense of more
iterations.
@ New lower complexity bound and game-theoretic
interpretation for first-order methods.
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