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Beyond convexity in large-scale first-order
optimization

Start with a reasonable FOM (some splitting method, gradient
projection method, alternating projection method, Lagrangian
method...):

3 Criticality / necessary optimality conditions (discrete
Lasalle’s invariance principle called “Zangwill’s theorem”)

? But what about convergence guarantees for the iterates?

? Decrease rates for the iterates/value?

Answer: well-designed notions of piecewise smoothness? Does
not work !
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Smooth counter-examples:
Palis-De Melo, an extension Absil et al.

There exist

f : R2 → R C∞ coercive nonnegative with
∇f −1({0}) = argmin f =unit disk

a bounded gradient sequence with constant step s > 0 (as
small as we want):

xk+1 = xk − s∇f (xk)

such that
f (xk) ↓ min f = 0, ∇f (xk)→ 0

but with this awful property

The set of limit-points of xk is the unit circle
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Smooth counter-examples:
Palis-De Melo, an extension Absil et al.

Easier to understand with ẋ(t) = −∇f (x(t))

Idea: Spiraling bump yields spiraling curves

A function that yields similar results:

f (r , θ) = exp(1− r2)

(
1− r4

r4 + (1− r2)4

)
sin

(
θ − 1

1− r2

)
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Source of counter-examples: oscillations

Oscillations in Optimization:

Oscillations =⇒ gradient direction=very bad predictors

arbitrarily bad rates/complexity for any fixed dimension...

– Even worst behaviors for nonsmooth functions

– Same awful behaviors for more complex meth-
ods: e.g. Forward-Backward
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Solutions to the oscillation issue? Alternative
framework?

Solutions to
these bad behaviors?

Topological approach:
avoid wild oscillations.

Use semi-algebraic
(or definable) functions

Too vague !!

Ad hoc approach:
study deformations

of a class of nonsmooth
functions “sharp function”

Too specific ??
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Semi-algebraic objects

Defined by finitely many polynomials

Easy to recognize (Tarski-Seidenberg, quantifier
elimination)

Very stable (image/pre-image, derivation, composition,
subdifferentiation...)

Oscillations are controlled: monotonicity
lemma/“finiteness of the number of connected
components.
Take A ⊂ Rp × Rn and Ax = {y ∈ Rp : (x , y) ∈ A}.
There exists N ∈ N such that cc(Ax) ≤ N, ∀x ∈ Rp
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Concrete examples

Polynomials 1
2 ||Ax − b||2, (A,B)→ 1

2 ||AB −M||2

max or min of polynomials

rank, `p norms (p rational or p =∞/infinity norm,
p = 0/zero norm)

standard cones: Rn
+, Lorenz cone, SDP...

What about non semi-algebraic problems?

analytic functions, e.g., log det

`p norm with p arbitrary

...

a similar theory holds:

o-minimality van den Dries / Shiota: global subanalyticity,
Dirichlet series, log-exp structure...
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Fréchet subdifferential

f : Rn → R ∪ {+∞} lsc proper.
First-order formulation: Let x in dom f
(Fréchet) subdifferential : p ∈ ∂̂f (x) iff

f (u) ≥ f (x) + 〈p |u− x〉+ o(||u− x ||), ∀u ∈ Rn.

0 1 2 3 4 5 6

0

1

2

3
u→ f (u)

u→ f (x) + 〈p |u− x〉
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Subdifferential

Definition (Mordhukovich 76)

It is denoted by ∂f and defined through:
x∗ ∈ ∂f (x) iff (xk , x

∗
k )→ (x , x∗) such that f (xk)→ f (x) and

f (u) ≥ f (xk) + 〈x∗k | u − xk〉+ o(‖u − xk‖).

Example: f (x) = ‖x‖1, ∂f (0) = B∞ = [−1, 1]n

Set
‖∂f (x)‖− = min{‖x∗‖ : x∗ ∈ ∂f (x)}

Properties (Critical point)

Fermat’s rule if f has a minimizer at x then ∂f (x) 3 0.
Conversely when 0 ∈ ∂f (x), the point x is called critical.
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An elementary remedy to “gradient oscillation”:
Sharpness

A function f : Rn → R ∪ {+∞} is called sharp on the slice
[r0 < f < r1] := {x ∈ Rn : r0 < f (x) < r1}, if there exists c > 0

‖∂f (x)‖− ≥ c > 0, ∀x ∈ [r0 < f < r1]

Basic example f (x) = ‖x‖

−5 0 5 −5
0

50

20

Many works since 78, Rockafellar, Polyak, Ferris, Burke and
many many others...
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Sharpness: example

−4 −2 0 2 4 −5

0

5
0

5

Nonconvex illustration with a continuum of minimizers
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Finite convergence

Why is sharpness a remedy?
Slopes towards the “minimizers” overcome frankly other
“parasite slopes”

Gradient curves reach “the valley” within a finite
time.
Easy to see the phenomenon on proximal descent
Prox descent = formal setting for implicit gradient

x+ = x − step. ∂f (x+)

Prox operator:
proxsf x = argmin{f (u) + 1

2s ||u − x ||2 : u ∈ Rn}
(Moreau)

x+ = prox step
f (x)

When f is sharp, convergence occurs in finite time !!
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Proof

Assume f is sharp, then if xk+1 is non critical
f (xk+1) ≤ f (xk)− δ.

Write (assume “step” is constant)

f (xk+1) ≤ f (xk)− ‖xk+1 − xk‖2

xk+1 − xk ∈ step. ∂f (xk+1) thus ‖xk+1 − xk‖ ≥ c .step

f (xk+1) ≤ f (xk)− (c .step)2

Set δ = (c .step)2.
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Measuring the default of sharpness

0 is a critical value of f (true up to a translation).
Set [0 < f < r0] := {x ∈ Rn : 0 < f (x) < r0} and assume
that there are no critical points in [0 < f < r0].

f has the KL property on [0 < f < r0] if there exists a
function g : [0 < f < r0]→ R ∪ {+∞} whose sublevel sets are
those of f , ie [f ≤ r ]r∈(0,r0), and such that

||∂g(x)||− ≥ 1 for all x in [0 < f < r0].

EX (Concentric “ellipsoids”) f (x) = 1
2〈Ax , x〉 and

g(x) =
√

f
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Formal KL property

Formally :
Desingularizing functions on (0, r0) :
ϕ ∈ C ([0, r0),R+), concave, ϕ ∈ C 1(0, r0), ϕ′ > 0 and
ϕ(0) = 0.

Definition

f has the KL property on [0 < f < r0] if there exists a
desingularizing function ϕ such that

||∂(ϕ ◦ f )(x)||− ≥ 1, ∀x ∈ [0 < f < r0].

Local version : replace [0 < f < r0] by the intersection of
[0 < f < r0] with a closed ball.
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Some results in the “smooth world”

Theorem [ Lojasiewicz 1963/Kurdyka 98] If f is
analytic/“o-minimal”, it is KL with ϕ(s) = Ks1−θ.

Gradient dominated functions of Polyak 63, for f convex

‖∇f (x)‖2 ≥ K (f (x)−min f )

KL with 1√
K

√
s. Many ideas were present...

Y. Ol’Khoovsky (1972) analyzed the gradient method
(Absil, Mahony, Andrews 05 similar results independently)

In 2006 Polyak & Nesterov 06, introduced

‖∇f (x)‖p ≥ K (f (x)−min f )

for complexity purposes of second/third order methods.
This is exactly  Lojasiewicz inequality when p > 1.
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Going beyond smoothness/analyticity?

Theorem (B-Daniilidis-Lewis 2006)

Nonsmooth semialgebraic/subanalytic case 2006: Take
f : Rn → R ∪ {+∞} lower semicontinuous and semialgebraic
then f has KL property around each point.

Many many functions satisfy KL inequality see:

– B-Daniilidis-Lewis-Shiota 2007
– B-Daniilidis-Ley-Mazet 2010

In Optimization see also but also Attouch, B., Redont
2010, B-Sabach-Teboulle 2014...



Jérôme
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Brief “technical” comments on KL

The ingredients

A nonsmooth Sard’s theorem: finiteness of critical values

“Amenability to sharpness” is equivalent to the fact that
there exists a talweg (“path in the valley”) of finite length
a result from B., Daniilidis, Ley, Mazet.

In the semi-algebraic world, desingularization functions are
of the form ϕ(s) = cs1−θ this is Puiseux Lemma.

How all this impacts optimization?
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Descent methods at large (?P. Tseng?)

Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous
function; a, b > 0.
Let xk be a sequence in dom f such that

Sufficient decrease condition

f (xk+1) + a‖xk+1 − xk‖2 ≤ f (xk); ∀k ≥ 0

Relative error condition For each k ∈ N, there exists
wk+1 ∈ ∂f (xk+1) such that

‖wk+1‖ ≤ b‖xk+1 − xk‖;
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Convergence theorem

Theorem (Attouch-B-Svaiter 2012 / B. Sabach-Teboulle 13)

Let f be a KL function and xk a descent subgradient sequence
for f .
If xk is bounded then it converges to a critical point of f .

Corollary

Let f be a coercive semi-algebraic function and xk a descent
sequence for f .
Then xk converges to a critical point of f .
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Rate of convergence

Assume that ϕ(s) = cs1−θ with c > 0, θ ∈ [0, 1).

Theorem

(i) If θ ∈ (0, 12 ] then there exist d > 0 and Q ∈ [0, 1) such that
‖xk − x∞‖ ≤ d Qk ,
(ii) If θ ∈ (12 , 1) then there exists c1, c2 > 0 such that

‖xk − x∞‖ ≤ c1 k−
1−θ
2θ−1 , f (xk)− f (x∞) ≤ c2 k−

1
2θ−1 = o

(
1

k

)

0.6 0.7 0.8 0.9 1
0
2
4
6
8

10

θ “flatness degree”

C
on

v.
ra

te θ → 1−θ
2θ−1
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Forward-backward splitting algorithm

From now on all objects are assumed to be SA

Minimizing nonsmooth+smooth structure: f = g + h

with

{
h ∈ C 1 and ∇h L− Lipschitz continuous
g lsc bounded from below + prox is easily computable

Forward-backward splitting (Lions-Mercier 79): Let γk be such
that 0 < γ < γk < γ < 1

L

xk+1 ∈ prox γk g (xk − γk∇h(xk)).

Theorem

If the problem is coercive xk is a converging sequence
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Gradient projection

C a semi-algebraic set, f a semi-algebraic function.

xk+1 ∈ PC

(
xk − γk∇f (xk)

)
Theorem

If the sequence xk is bounded it converges to a critical point of
the problem minC f

Example: Inverse problems with sparsity constraints:

min

{
1

2
‖Ax − b‖2 : x ∈ C

}
C=sparsity constraint/rank constraint/simple constraints
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von Neumann alternating projections?

Assumptions: C semi-algebraic closed and D semi-algebraic
and convex.
Example: D=Hankel matrices and C =matrices of rank lower
than r .

xk+1 ∈ PC (yk), yk+1 = PD(xk).

Careful oscillations are possible... A circle for C and its center
D = {center}
A solution under-relax:

Theorem

Bounded sequences of the form

xk+1 ∈ PC

(
εxk + (1− ε)PD(xk)

)
are converging.

More subtle results by Noll-Rondepierre in the same category
based on nonsmooth KL
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Averaged projections with underrelaxation

xk+1 ∈ (1− θ) xk + θ

(
1

p

p∑
i=1

PFi
(xk)

)
, θ ∈]0, 1[

Theorem (Averaged projection method)

F1, . . . ,Fp be closed semi-algebraic which satisfy
⋂p

i=1 Fi 6= ∅.
If x0 is sufficiently close to

⋂p
i=1 Fi , then xk converges to a

feasible point x̄ , i.e. such that

x̄ ∈
p⋂

i=1

Fi .
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Alternating versions of prox algorithm

F : Rm1 × . . .× Rmp → R ∪ {+∞} lsc semi-algebraic
Structure of F :

F (x1, . . . , xp) =

p∑
i=1

fi (xi ) + Q(x1, . . . , xp)

fi are proper lsc and Q is C 1.

Gauss-Seidel method/ Prox (Auslender 1993)

xk+1
1 ∈ argmin

u∈Rm1
F (u, xk

2 , . . . , x
k
p ) +

1

2µ1
‖u− x1

k‖2

. . .

xk+1
p ∈ argmin

u∈Rmp
F (xk+1

1 , . . . , xk+1
p−1 ,u) +

1

2µp
‖u− xp

k ‖
2
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Alternating versions of prox algorithm

F : Rm1 × . . .× Rmp → R ∪ {+∞} lsc semi-algebraic
Structure of F :

F (x1, . . . , xp) =

p∑
i=1

fi (xi ) + Q(x1, . . . , xp)

fi are proper lsc and Q is C 1.

Gauss-Seidel method/ Prox (Auslender 1993)

xk+1
1 ∈ argmin

u∈Rm1
F (u, xk

2 , . . . , x
k
p ) +

1

2µ1
‖u− x1

k‖2

. . .

xk+1
p ∈ argmin

u∈Rmp
F (xk+1

1 , . . . , xk+1
p−1 ,u) +

1

2µp
‖u− xp

k ‖
2
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Proximal Gauss-Seidel

F (x1, . . . , xp) =

p∑
i=1

fi (xi ) + Q(x1, . . . , xp)

fi are proper lsc and Q is C 1.

xk+1
1 ∈ argmin

u∈Rm1
f1(u) + Q(u, . . . , xp) +

1

2µ1
‖u− x1

k‖2

xk+1
p ∈ argmin

u∈Rmp
fp(u) + Q(x1, . . . ,u) +

1

2µp
‖u− xp

k ‖
2

Theorem

Bounded sequences of the prox Gauss-Seidel method converge
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Proximal alternating linearized method: PALM (B.
Sabach, Teboulle)

F (x) = Q(x1, x2) + f1(x1) + f2(x2)
(B., Sabach, Teboulle, 14) linearization idea:

xk+1
1 ∈ argmin

u∈Rm1
f1(u) + 〈∇Q(u, x2)|u − x1〉+

1

2µ1
‖u− x1

k‖2

xk+1
2 ∈ argmin

u∈Rm2
f2(u) + 〈∇Q(x1,u)|u − x1〉+

1

2µ2
‖u− x2

k‖2

xk+1
1 ∈ prox 1

µk
1

f1

(
xk
1 −

1

µk1
∇x1Q(xk

1 , x
k
2 )

)
,

xk+1
2 ∈ prox 1

µk
2

f1

(
xk
1 −

1

µk2
∇x2Q(xk+1

1 , xk
2 )

)
.

Good choice of steps?
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Proximal alternating linearized method

∀x1, Q(x1, ·) is C 1 with L2(x1) > 0 Lipschitz continuous
gradient (same for x2 with L1(x2))

xk+1
1 ∈ prox 1

L1(x
k
2
)
f1

(
xk
1 −

1

L1(xk
2 )
∇x1Q(xk

1 , x
k
2 )

)
.

xk+1
2 ∈ prox 1

L2(x
k
1
)
f1

(
xk
1 −

1

L2(xk
1 )
∇x2Q(xk+1

1 , xk
2 )

)
.

Example: Several applications in sparse NMF, blind
deconvolution (Pesquet, Repetti...), dictionary learning
(Gribonval, Malgouyres..). General structure: M a fixed matrix,
r , s integers,
min

{
1
2‖AB −M‖2 : ‖A‖0 ≤ r , ‖B‖0 ≤ s

}
Theorem

Bounded sequences of PALM converge
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Going further in this line?

Complex problems à la SQP (with Pauwels)

Lagrangian methods (with Sabach-Teboulle)

Alternating methods have a different nature (with
Pauwels-Ngambou) but there are works by Li,
Noll-Rondepierre, Druviatskii-Ioffe-Lewis....

Fast methods???
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A flavour of this complications: A simple
SQP/SCQP method

We wish to solve

min{f (x) : x ∈ Rn, fi (x) ≤ 0}

which can be written min f + iC with C = [fi ≤ 0,∀i ].

We assume:

∇f is Lf Lipschitz
∀i , ∇fi is Lfi Lipschitz continuous.

Prox operator here are out of reach: too complex !!
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Moving balls methods

Classical Sequential Quadratic Programming (SQP) idea,
replace functions by some simple approximations.

Moving balls method (Auslender-Shefi-Teboulle, Math. Prog.,
2010)

min
x∈Rn

f (xk) + f ′(xk)(x − xk)+
Lf

2
||x − xk ||2

f1(xk) + f ′1(xk)(x − xk)+
Lf1

2
||x − xk ||2 ≤ 0

. . .

fm(xk) + f ′m(xk)(x − xk)+
Lfm

2
||x − xk ||2 ≤ 0

Bad surprise: xk is not a descent sequence for f + iC .
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Moving balls methods

Introduce

val(x) = min
y∈Rn

f (x) + f ′(x)(y − x)+
Lf

2
||y − x ||2

f1(x) + f ′1(x)(y − x)+
Lf1

2
||y − x ||2 ≤ 0

. . .

fm(x) + f ′m(x)(y − x)+
Lfm

2
||y − x ||2 ≤ 0

Good surprise: xk is a descent sequence for val.

Theorem

Assume Mangasarian-Fromovitz qualification condition.
If xk is bounded it converges to a KKT point of the original
problem.
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