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Beyond convexity in large-scale first-order
optimization
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Beyond

convexity Start with a reasonable FOM (some splitting method, gradient

projection method, alternating projection method, Lagrangian
method...):

v/ Criticality / necessary optimality conditions (discrete
Lasalle’s invariance principle called “Zangwill's theorem™)

@ But what about convergence guarantees for the iterates?

@ Decrease rates for the iterates/value?

Answer: well-designed notions of piecewise smoothness? Does
not work !



Smooth counter-examples:

Palis-De Melo, an extension Absil et al.
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There exist

R m f:R? = R C* coercive nonnegative with
convexity V£~1({0}) = argmin f =unit disk

m a bounded gradient sequence with constant step s > 0 (as
small as we want):

XKL = XK — sV F(x)

such that
f(xk) { minf =0, Vf(xx) — 0

but with this awful property

The set of limit-points of x, is the unit circle
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Beyond
convexity

Smooth counter-examples:

Palis-De Melo, an extension Absil et al.

Easier to understand with x(t) = =V f(x(t))

Idea: Spiraling bump yields spiraling curves

level lines of f — argmin f 1

a gradient curve x(t) = —Vf(x(t)) ‘

4

A function that yields similar results:



Source of counter-examples: oscillations

JEROME
BoLrts

Beyond Oscillations in Optimization:

convexity

m Oscillations = gradient direction=very bad predictors

m arbitrarily bad rates/complexity for any fixed dimension...

— Even worst behaviors for nonsmooth functions

— Same awful behaviors for more complex meth-
ods: e.g. Forward-Backward




Solutions to the oscillation issue? Alternative

framework?

o Solutions to
Beyond these bad behaviors?

convexity

Topological approach: Ad hoc approach:

avoid wild oscillations. study deformations
Use semi-algebraic of a class of nonsmooth

(or definable) functions functions “sharp function”

Too vague !! Too specific ?7



Semi-algebraic objects

Defined by finitely many polynomials

o m Easy to recognize (Tarski-Seidenberg, quantifier
algebraicity elimination)

and

o-minimality m Very stable (image/pre-image, derivation, composition,
subdifferentiation...)
m Oscillations are controlled: monotonicity
lemma/ “finiteness of the number of connected
components.
Take AC RP x R" and A, = {y € RP : (x,y) € A}.
There exists N € N such that cc(Ax) < N, Vx € RP



Concrete examples

m Polynomials 3||Ax — b[|?, (A, B) — 3||AB — M||?

® max or min of polynomials

m rank, ¢P norms (p rational or p = oco/infinity norm,
Semi- p = 0/zero norm)

algebraicity
and m standard cones: R’ , Lorenz cone, SDP...

o-minimality

What about non semi-algebraic problems?

m analytic functions, e.g., logdet
m /P norm with p arbitrary

a similar theory holds:

o-minimality van den Dries / Shiota: global subanalyticity,
Dirichlet series, log-exp structure...



Fréchet subdifferential

f:R" - RU{+4o00} Isc proper.
First-order formulation: Let x in dom f
(Fréchet) subdifferential : p € Of(x) iff

f(u) > f(x)+ (plu—x)+ o(|lu—x]|]), Vu e R".

Sharp
functions

—_— ‘u—>f(u‘)
—u 5 F(x) + (plu—x)




Subdifferential

Definition (Mordhukovich 76)

It is denoted by Of and defined through:
x* € Of (x) iff (xk, x¢) —= (x, x*) such that f(xx) — f(x) and

Fu) = F0x) + e[ u = xk) + o([|u = xl])-

Sharp
functions

Example: f(x) = ||x|[1, 9f(0) = B = [-1,1]"
Set
10f ()l = min{[[x"[| : x" € O (x)}

Properties (Critical point)

Fermat’s rule if f has a minimizer at x then 9f(x) 5 0.
Conversely when 0 € 9f(x), the point x is called critical.



An elementary remedy to “gradient oscillation”:

Sharpness

A function f : R” — R U {+o0} is called sharp on the slice
[ <f<n]={xeR":r<f(x)<n},if there exists ¢ > 0

|OF(x)||- > ¢c >0, Vxel[n<f<n]

Basic example f(x) = || x|

Sharp
functions

Many works since 78, Rockafellar, Polyak, Ferris, Burke and
many many others...




Sharpness: example

Nonconvex illustration with a continuum of minimizers

Sharp
functions




Finite convergence

Why is sharpness a remedy?
Slopes towards the “minimizers” overcome frankly other
“parasite slopes”

m Gradient curves reach “the valley” within a finite

time.
m Easy to see the phenomenon on proximal descent
Sharp Prox descent = formal setting for implicit gradient

functions

xT = x — step. Of (xT)

Prox operator:
proxix = argmin{f(u) + 5||u — x||* : u € R"}
(Moreau)

xT = prox P (x)

When f is sharp, convergence occurs in finite time !!



Assume f is sharp, then if xk*
f(xkF1) < f(xK) — 6.

1

Write (assume “step” is constant)

- f(Xk-i-l) < f(xk) _ ||Xk+1 _ Xk||2

m Xkt xk € step. OF (xK1) thus ||kt — xK|| > c.step

B f(xKT1) < f(xk) — (c.step)?
Set § = (c.step)?.

is non critical




Measuring the default of sharpness

0 is a critical value of f (true up to a translation).
Set [0 < f<nl:={xeR":0<f(x)<r}and assume
that there are no critical points in [0 < f < rp].

f has the KL property on [0 < f < rp] if there exists a
Sharp function g : [0 < f < ry] = R U {400} whose sublevel sets are
functions those of f, ie [f < r],(0,r), and such that

[|0g(x)||= > 1 forall xin [0 < f < rp].

(Concentric “ellipsoids”) f(x) = 3(Ax, x) and
g(x)=VFf



Formal KL property

Formally :
Desingularizing functions on (0, rp) :

@ € C([0, r0),Ry), concave, p € C}(0,r), ¢ >0 and
»(0) = 0.

Definition

Sharp

functions f has the KL property on [0 < f < rg] if there exists a
desingularizing function ¢ such that
[[0(o F)(x)||- =1, Vx € [0 < f < ro].

Local version : replace [0 < f < rp] by the intersection of
[0 < f < ro] with a closed ball.



Some results in the “smooth world”

m Theorem [tojasiewicz 1963 /Kurdyka 98] If £ is
analytic/ “o-minimal”, it is KL with ¢(s) = Ks'~9.

m Gradient dominated functions of Polyak 63, for f convex
HVf(x)H2 > K(f(x) — minf)

Sharp KL with #ﬁ Many ideas were present...

functions
m Y. OI'Khoovsky (1972) analyzed the gradient method
(Absil, Mahony, Andrews 05 similar results independently)

m In 2006 Polyak & Nesterov 006, introduced
IVF(x)||P > K(f(x) — minf)

for complexity purposes of second/third order methods.
This is exactly tojasiewicz inequality when p > 1.



Going beyond smoothness/analyticity?

Theorem (B-Daniilidis-Lewis 2006)

Nonsmooth semialgebraic/subanalytic case 2006: Take
f:R" — RU{+oo} lower semicontinuous and semialgebraic
then f has KL property around each point.

Sharp Many many functions satisfy KL inequality see:

functions

— B-Daniilidis-Lewis-Shiota 2007
— B-Daniilidis-Ley-Mazet 2010

In Optimization see also but also Attouch, B., Redont
2010, B-Sabach-Teboulle 2014...




Brief “technical’” comments on KL

ingredients

m A nonsmooth Sard's theorem: finiteness of critical values

m “Amenability to sharpness” is equivalent to the fact that

there exists a talweg (“path in the valley”) of finite length
fuh:cfgons a result from B., Daniilidis, Ley, Mazet.

m In the semi-algebraic world, desingularization functions are
of the form (s) = cs'~? this is Puiseux Lemma.

How all this impacts optimization?



Descent methods at large (7P. Tseng?)

Let f : R" — R U {400} be a proper lower semicontinuous
function; a, b > 0.
Let x* be a sequence in dom f such that

Sufficient decrease condition
f(xk+1) + aHxlﬁL:l — ka2 < f(xk); Vk >0

Relative error condition For each k € N, there exists
henags oot wktl € 9f (x¥*t1) such that

Iw ] < bl — X



Convergence theorem

Theorem (Attouch-B-Svaiter 2012 / B. Sabach-Teboulle 13)

Let f be a KL function and x* a descent subgradient sequence
for f.

If x¥ is bounded then it converges to a critical point of f.

Corollary

WO | ot  be a coercive semi-algebraic function and x¥ a descent
methods
sequence for f.

Then x* converges to a critical point of f.



Rate of convergence

Assume that ¢(s) = cs=% with ¢ > 0, § € [0, 1).

Theorem

(i) If 0 € (0, 3] then there exist d >0 and Q € [0,1) such that
Ix* = x| < d Q,
(i) If 0 € (3,1) then there exists c1, co > 0 such that

= 1

[x = x| < ¢ k_%, f(xk) — f(x0) < & k"1 =0 (;)
Abstract descen t 10
methods & | _ 170

g 2 i 0= 51|

2 4 f

§ 2| f

0 : : ‘
0.6 0.7 0.8 0.9 1

0 “flatness degree”



Forward-backward splitting algorithm

From now on all objects are assumed to be SA

‘ Minimizing nonsmooth—+smooth structure: f =g+ h

. he Ctand Vh L — Lipschitz continuous
with . .
g Isc bounded from below + prox is easily computable

Forward-backward splitting (Lions-Mercier 79): Let ~y be such
that0<1<'yk<i<%

Abstract descent
methods

XL € prox, g (< — 1V h(x¥)).

Theorem

k

If the problem is coercive x* is a converging sequence



Gradient projection

C a semi-algebraic set, f a semi-algebraic function.

xk+l e pc (xk — ’kaf(Xk)>

Theorem

If the sequence x* is bounded it converges to a critical point of
the problem min¢ f

Example: Inverse problems with sparsity constraints:

Illustration

1
S min {2”AX —b|*:x € C}

C=sparsity constraint/rank constraint/simple constraints



von Neumann alternating projections?

Assumptions: C semi-algebraic closed and D semi-algebraic
and convex.

Example: D=Hankel matrices and C=matrices of rank lower
than r.

X e Pe(yk),  yir1 = Pp(x)-

Careful oscillations are possible... A circle for C and its center
D = {center}
A solution under-relax:

Theorem

lustaton: Bounded sequences of the form
splitting an
xk+1 e Pc (exk +(1- e)PD(Xk)) are converging.

others method

More subtle results by Noll-Rondepierre in the same category
based on nonsmooth KL



Averaged projections with underrelaxation

e (1-0)x +9< ZPF k)),ae]o,l[

Theorem (Averaged projection method)

Fi,...,Fp be closed semi-algebraic which satisfy (\f_; F; # 0.
If x° is sufficiently close to ﬂle F;, then x* converges to a
feasible point x, i.e. such that

Illustration v 0
splitting and X € | I Fl‘

others method



Alternating versions of prox algorithm

F:R™ x...xR™ — RU{+o0} Isc semi-algebraic
Structure of F :

F(Xl,...,XP) = Zf,(X,) + Q(Xl,...,Xp)

i=1
f; are proper Isc and Q is C.
Gauss-Seidel method
. XKt cargmin F(u,xX, ..., xX
IHlustration 1 'm s A2 » p
splitting and uc 1
others method
k+1 . k+1 k+1
X, - €argmin  F(x ..., x, 1, u)

ucR™p



Alternating versions of prox algorithm

F:R™ x...xR™ — RU{+o0} Isc semi-algebraic
Structure of F :

p
F(x1,...,xp) = Z fi(xi) + Q(x1, ..., xp)
i=1

f; are proper Isc and Q is C.

Gauss-Seidel method/ Prox (Auslender 1993)

1
k+1 - k k 192
Tpees a € agmin Fluog, )+ g gl
others method
1
k+1 - k+1 k+1 2
Xkt € argmin F(xt ’_..,xpfl,u)JrﬁHu—x,fH




Proximal Gauss-Seidel

f; are proper Isc and Q is C!.

1

k .

X1+1 € aurengnén fi(u) + Q(u,...,xp)—i-z—ulHu—Xi”Z

Xkt cargmin f(u) + Q(x u) + i||u — xP||?
p rgmin - fp 1) o K

Illustration
splitting and

others method
Theorem

Bounded sequences of the prox Gauss-Seidel method converge



Proximal alternating linearized method: PALM (B.

Sabach, Teboulle)

F(x) = Q(x1,x2) + fi(x1) + fo(x2)
(B., Sabach, Teboulle, 14) linearization idea:

k+1 -
x e argmin ﬂ(u)+<VQ(u,X2)|u—x1>+ﬂ|

. 1
Xkt ¢ argmin fo(u) + (VQ(x1,u)|u — x1) + 2—,u2]|u — X

1

k+1 k ko k

x; T € prox g <x1 - MkVXIQ(Xl,x2)>,
K1 1

Illustration

splitting ani k+1 k 1 k+1 k
orélhtetrs %net:od X2 € prOX ik fl <X1 - /_,Lk VXZ Q(X]_ Y X2 )) :
K2

2

’Good choice of steps?‘




Proximal alternating linearized method

Vx1, Q(xi,-)is C* with Ly(x1) > 0 Lipschitz continuous
gradient (same for x» with L1(x2))

k+1 k 1 ko k
x; € prox _1 f (xl — = Vi Q(x{', % )> .
o) L1()
1
k+1 k k+1  k
Xy T EProx _1_g (Xl — —— Ve, QX % )) .
26" La(xf) ™ ’

Example: Several applications in sparse NMF, blind
deconvolution (Pesquet, Repetti...), dictionary learning
(Gribonval, Malgouyres..). General structure: M a fixed matrix,
r,s integers,

Illustration

& S i (1)AB - M| Ao < r.|Bllo < s

Theorem

Bounded sequences of PALM converge



Going further in this line?

Complex problems a la SQP (with Pauwels)

Lagrangian methods (with Sabach-Teboulle)

Alternating methods have a different nature (with
Pauwels-Ngambou) but there are works by Li,
Noll-Rondepierre, Druviatskii-loffe-Lewis....

m Fast methods???

Illustration
splitting and
others method



A flavour of this complications: A simple

SQP/SCQP method

We wish to solve
min{f(x) : x € R", fi(x) < 0}

which can be written min f + ic with C = [f; < 0,Vi].

We assume:

Vf is Lf Lipschitz
Vi, Vf; is Lg Lipschitz continuous.

Illustration

splitting and

i et Prox operator here are out of reach: too complex !!




Moving balls methods

Classical Sequential Quadratic Programming (SQP) idea,
replace functions by some simple approximations.

Moving balls method (Auslender-Shefi-Teboulle, Math. Prog.,
2010)

. L¢
/ _ Len, o2
min f(xk) + F(x)(x — xk)+ > [|x — x|

L
A(xk) + A () (x — xe)+ 2 [x — xe|[2 < 0

L
Fin() + F () (x = x00)+ 7 [x = el [* < 0

Illustration

splitting and
others method

‘Bad surprise: xi is not a descent sequence for f + ic.




Moving balls methods

Introduce

L
val(x) = min f(x)+ f'(x)(y — x)+—f\|y — xH2
y€eRn 2

L
AG) + RGNy = x)+ly =[P <0

L
fin() + Fp()(y = 2)+ 22 |ly = x[* < 0

‘Good surprise: x; is a descent sequence for val.‘

Illustration

Theorem

splitting and
others method

Assume Mangasarian-Fromovitz qualification condition.
If x, is bounded it converges to a KKT point of the original
problem.
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