$D = D_{\tau} \star$	D = D	Experiments	Conclusion

Consistent change-point detection with kernels

Sylvain Arlot¹ (joint works with Alain Celisse², Damien Garreau³ & Zaïd Harchaoui⁴)

¹Université Paris-Sud

²Université Lille 1

³Université Nice Sophia Antipolis

⁴University of Washington

Changepoint Workshop, 2019, Paris, November 13, 2019

Introduction ●0000000	$\begin{array}{l} D=D_{\tau}\star\\ 00000\end{array}$	$D = \widehat{D}$	Experiments 0000000	Conclusion
Example 1: 1	-D signal			

Sylvain Arlot

2/30

Sylvain Arlot

2/30

Introduction 0000000	$\begin{array}{l} D=D_{\tau}\star\\ 00000\end{array}$	$D = \widehat{D}$	Experiments 0000000	Conclusion
	and the second second second			

3/30 Sylvain Arlot

oooooo ooooo ooooo	

Introduction	$D = D_{ au} \star$	$\begin{array}{c} D = \widehat{D} \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Experiments 0000000	Conclusion
The change	-point prob	olem		

- Observation: $X_1, \ldots, X_n \in \mathcal{X}$ independent random variables (\mathcal{X} : arbitrary measurable set).
- P_{X_i} : distribution of X_i .
- ⇒ find where are the abrupt changes in the sequence P_{X_1}, \ldots, P_{X_n} ?

Notation:

$$\tau \in \mathcal{T}_n^D := \{(\tau_0, \ldots, \tau_D) \in \mathbb{N}^{D+1}, \, 0 = \tau_0 < \tau_1 < \cdots < \tau_D = n\}$$

segmentation (of $\{1, \ldots, n\}$) into $D_{ au} = D \in \{1, \ldots, n\}$ segments.

- Obtect changes in the whole distribution (not only the mean)
 - Mean:
 - homoscedastic: Birgé & Massart (2001), Comte & Rozenholc (2002, 2004), Baraud, Giraud & Huet (2010)...
 - heteroscedastic: A. & Celisse (2011)
 - Mean and variance: Picard et al. (2007), Fryzlewicz and Subba Rao (2014)
 - Full distribution: Zou et al. (2014) in $\mathbb R,$ Matteson & James (2014) in $\mathbb R^d$

- Obtect changes in the whole distribution (not only the mean)
 - Mean:
 - homoscedastic: Birgé & Massart (2001), Comte & Rozenholc (2002, 2004), Baraud, Giraud & Huet (2010)...
 - heteroscedastic: A. & Celisse (2011)
 - Mean and variance: Picard et al. (2007), Fryzlewicz and Subba Rao (2014)
 - Full distribution: Zou et al. (2014) in ℝ, Matteson & James (2014) in ℝ^d
 - Itigh-dimensional data of different nature:
 - Vectorial: measures in \mathbb{R}^d , curves (sound recordings,...)
 - Non vectorial: phenotypic data, graphs, DNA sequence,...
 - Both vectorial and non vectorial data.

- Obtect changes in the whole distribution (not only the mean)
 - Mean:
 - homoscedastic: Birgé & Massart (2001), Comte & Rozenholc (2002, 2004), Baraud, Giraud & Huet (2010)...
 - heteroscedastic: A. & Celisse (2011)
 - Mean and variance: Picard et al. (2007), Fryzlewicz and Subba Rao (2014)
 - Full distribution: Zou et al. (2014) in $\mathbb R,$ Matteson & James (2014) in $\mathbb R^d$
 - e High-dimensional data of different nature:
 - Vectorial: measures in \mathbb{R}^d , curves (sound recordings,...)
 - Non vectorial: phenotypic data, graphs, DNA sequence,...
 - Both vectorial and non vectorial data.

Sefficient algorithm allowing to deal with large data sets

5/30

Introduction ○○○○●○○○	$D=D_{ au}\star$ 00000	$\begin{array}{l} D = \widehat{D} \\ 0 0 0 0 0 0 0 0 0 \end{array}$	Experiments 0000000	Conclusion
Kernels:	a quick reminder			

 k: X × X → ℝ measurable is a positive semidefinite kernel if ∀x₁,..., x_m ∈ X, the matrix (k(x_i, x_j))_{1≤i,j≤m} is positive semidefinite.

- Examples:
 - linear kernel: $k(x, y) = \langle x, y \rangle$,
 - polynomial kernel: $k(x, y) = (1 + \langle x, y \rangle)^p$
 - Gaussian kernel: $k(x, y) = \exp(-||x y||^2 / (2h^2))$,
 - χ^2 kernel on Δ^d : $k(x, y) = \exp\left(-\frac{1}{h \cdot d} \sum_{i=1}^d \frac{(x_i y_i)^2}{x_i + y_i}\right)$
 - . . .

Introduction	$D = D_{ au} \star$	D = D	Experiments	Conclusion
00000000				
The kernel	least-square	es criterion		

• Least-squares criterion (when $\mathcal{X} = \mathbb{R}$): $\forall \tau \in \mathcal{T}_n := \bigcup_{D \ge 1} \mathcal{T}_n^D$,

$$\widehat{\mathcal{R}}_n(\tau) := \frac{1}{n} \sum_{\ell=1}^{D} \sum_{i=\tau_{\ell-1}+1}^{\tau_\ell} (X_i - \overline{X}_{\tau_{\ell-1}+1,\tau_\ell})^2.$$

• Kernel least-squares criterion:

$$\begin{split} \widehat{\mathcal{R}}_n(\tau) &:= \frac{1}{n} \sum_{i=1}^n k(X_i, X_i) \\ &- \frac{1}{n} \sum_{\ell=1}^D \left[\frac{1}{\tau_{\ell} - \tau_{\ell-1}} \sum_{i=\tau_{\ell-1}+1}^{\tau_{\ell}} \sum_{j=\tau_{\ell-1}+1}^{\tau_{\ell}} k(X_i, X_j) \right] \end{split}$$

• The two definitions coincide when $\mathcal{X} = \mathbb{R}$ and k(x, y) = xy.

7/30

$$pen(\tau) = \frac{1}{n} \left[c_1 \log \binom{n-1}{D_{\tau} - 1} + c_2 D_{\tau} \right]$$
$$pen(\tau) = \frac{D_{\tau}}{n} \left[c_1 \log \binom{n}{D_{\tau}} + c_2 \right]$$
$$pen(\tau) = \frac{c_1 D_{\tau}}{n}.$$

For $\mathcal{X} = \mathbb{R}$, linear kernel, Birgé & Massart (2001) and Lebarbier (2005) take pen $(\tau) = \frac{\sigma^2 D_{\tau}}{n} \left[c_1 \log \left(\frac{n}{D_{\tau}} \right) + c_2 \right]$.

Introduction ○○○○○○●	$D=D_{ au}\star$ 00000	$\begin{array}{c} D = \widehat{D} \\ \circ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Experiments 0000000	Conclusion
(Abstract)	intuition on	КСР		

 KCP ⇔ kernelized version of (penalized) least-squares change-point detection

- KCP ⇔ kernelized version of (penalized) least-squares change-point detection
- Canonical feature map Φ : x ∈ X → k(x, ·) ∈ H reproducing kernel Hilbert space (RKHS)
- $Y_i = \Phi(X_i) \in \mathcal{H}$ are independent \mathcal{H} -valued r.v.

- KCP ⇔ kernelized version of (penalized) least-squares change-point detection
- Canonical feature map Φ : x ∈ X → k(x, ·) ∈ H reproducing kernel Hilbert space (RKHS)
- $Y_i = \Phi(X_i) \in \mathcal{H}$ are independent \mathcal{H} -valued r.v.

• $\mathbb{E}[\sqrt{k(X_i, X_i)}] < \infty \Rightarrow$ can define $\mu_i^* \in \mathcal{H}$ the "mean" of Y_i \Rightarrow KCP detects jumps of the "mean" μ_i^* of Y_i

- KCP ⇔ kernelized version of (penalized) least-squares change-point detection
- Canonical feature map Φ : x ∈ X → k(x, ·) ∈ H reproducing kernel Hilbert space (RKHS)
- $Y_i = \Phi(X_i) \in \mathcal{H}$ are independent \mathcal{H} -valued r.v.

- $\mathbb{E}[\sqrt{k(X_i,X_i)}] < \infty \Rightarrow$ can define $\mu_i^{\star} \in \mathcal{H}$ the "mean" of Y_i
- \Rightarrow KCP detects jumps of the "mean" μ_i^{\star} of Y_i
 - Remark: if k is characteristic (eg, Gaussian kernel), μ_i^* characterizes P_{X_i} .

30

$$\widehat{ au}(D) \in \operatorname*{argmin}_{ au \in \mathcal{T}^D_n} \{\widehat{\mathcal{R}}_n(au)\}$$

- Dynamic programming algorithm
- No computation in *H*, only needs to compute the k(X_i, X_j) (cost C_k)
- Complexity of computing $(\hat{\tau}(D))_{1 \leq D \leq D_{max}}$:

time $\mathcal{O}((\mathcal{C}_k + D_{\max})n^2)$ and space $\mathcal{O}(D_{\max}n)$ (Celisse et al., 2018).

Introduction 00000000	$\begin{array}{c} D = D_{\tau} \star \\ \circ \bullet \circ \circ \circ \end{array}$	$D = \widehat{D}$ 00000000	Experiments 0000000	Conclusion
Main assump	otions			

- \mathcal{H} separable
- Bounded kernel/data:

 $\exists M < +\infty, \forall i \in \{1, \ldots, n\}, \qquad k(X_i, X_i) \leqslant M^2 \text{ a.s.}$ (Db)

 $\Rightarrow\,$ always satisfied for Gaussian and χ^2 kernel.

Introduction 00000000	$D = D_{ au} \star$ 00000	$\begin{array}{c} D = \stackrel{\frown}{D} \\ \circ $	Experiments 0000000	Conclusion
$D = D_{\tau^{\star}}$	known: notat	cions		

• True segmentation τ^* :

$$\mu_1^{\star} = \dots = \mu_{\tau_1^{\star}}^{\star} \neq \mu_{\tau_1^{\star}+1}^{\star} = \dots = \mu_{\tau_2^{\star}}^{\star} \neq \dots \neq \mu_{\tau_{D_{\tau^{\star}}-1}^{\star}+1}^{\star} = \dots = \mu_n^{\star}.$$

- Smallest jump size: $\underline{\Delta} := \min_{i \neq \mu_i^{\star} \neq \mu_{i+1}^{\star}} \|\mu_i^{\star} \mu_{i+1}^{\star}\|_{\mathcal{H}}$ (MMD, Gretton et al. 2006).
- Smallest segment length: $\underline{\Lambda}_{\tau} := \frac{1}{n} \min_{1 \leq \ell \leq D_{\tau}} |\tau_{\ell} \tau_{\ell-1}|.$
- Loss between segmentations $au^1, au^2 \in \mathcal{T}_n$:

$$d_{\infty,n}(\tau^{1},\tau^{2}) := \frac{1}{n} \max_{1 \leq i \leq D_{\tau^{1}}-1} \left\{ \min_{1 \leq j \leq D_{\tau^{2}}-1} \left| \tau_{i}^{1} - \tau_{j}^{2} \right| \right\}$$
$$= \frac{1}{n} \max_{1 \leq i \leq D_{\tau^{1}}-1} \left| \tau_{i}^{1} - \tau_{i}^{2} \right| \qquad \text{if } D_{\tau^{1}} = D_{\tau^{2}} \text{ and } \tau^{1}, \tau^{2} \text{ "close"}$$

12/30

Introduction 00000000	$\begin{array}{c} D = D_{\tau} \star \\ \circ \circ \circ \bullet \circ \end{array}$	D = D	Experiments 0000000	Conclusion
$D = D_{\tau^{\star}}$	known: estima	tion of chang	e-points loca	tions

Theorem (A. & Garreau, 2018)

Assume: \mathcal{H} separable, (**Db**), y > 0 and

$$\underline{\Lambda}_{\tau^{\star}} > v_n(y) := \frac{148D_{\tau^{\star}}M^2}{\underline{\Delta}^2} \cdot \frac{y + \log n + 1}{n}$$

Then, with probability $1 - e^{-y}$,

$$\forall \widehat{\tau}(D_{\tau^{\star}}) \in \underset{\tau \in \mathcal{T}_{n}^{D_{\tau^{\star}}}}{\operatorname{argmin}} \{ \widehat{\mathcal{R}}_{n}(\tau) \}, \qquad \mathrm{d}_{\infty,n}(\tau^{\star}, \widehat{\tau}(D_{\tau^{\star}})) \leqslant v_{n}(y).$$

Corollary (A. & Garreau, 2018, simplified result)

Assume:
$$\mathcal{H}$$
 separable, (**Db**) and $\frac{\Delta^2}{M^2} \gtrsim \frac{D_{\tau^{\star}}}{\underline{\Lambda}_{\tau^{\star}}} \cdot \frac{\log n}{n}$.
Then, with probability $1 - n^{-2}$,

$$\forall \widehat{\tau}(D_{\tau^{\star}}) \in \operatorname*{argmin}_{\tau \in \mathcal{T}_{n}^{D_{\tau^{\star}}}} \{\widehat{\mathcal{R}}_{n}(\tau)\}, \qquad \mathrm{d}_{\infty,n}(\tau^{\star}, \widehat{\tau}(D_{\tau^{\star}})) \lesssim \frac{D_{\tau^{\star}}M^{2}}{\underline{\Delta}^{2}} \cdot \frac{\log n}{n}.$$

• $\frac{\Delta^2}{M^2} \approx$ signal-to-noise ratio.

- Matches minimax lower bound log(n)/n (Brunel, 2014).
- Remark: log(n) factor not necessary in the standard "asymptotic" setting (Korostelev & Tsybakov, 2012).

ntroduction 00000000	$D = D_{ au} \star$ 00000	D = D	Experiments 0000000	Conclusion
KCP:	data-driven D by	model select	ion	

- Notation: $Y = (Y_1, \dots, Y_n) \in \mathcal{H}^n$, $\mu^\star = (\mu_1^\star, \dots, \mu_n^\star) \in \mathcal{H}^n$
- For any $\tau \in \mathcal{T}_n$, $\Pi_{\tau} : \mathcal{H}^n \to \mathcal{H}^n$ orthogonal projection onto $F_{\tau} = \{(f_1, \dots, f_n) \in \mathcal{H}^n / f_{\tau_{\ell-1}+1} = \dots = f_{\tau_{\ell}} \, \forall \ell = 1, \dots, D_{\tau} \}$

 $\Rightarrow \text{ Least-squares estimator } \widehat{\mu}_{\tau} = \Pi_{\tau} Y$ and least-squares criterion: $\widehat{\mathcal{R}}_{n}(\tau) = \frac{1}{n} \|Y - \widehat{\mu}_{\tau}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|Y_{i} - (\widehat{\mu}_{\tau})_{i}\|_{\mathcal{H}}^{2}$

ntroduction	$D = D_{ au} \star$	D = D	Experiments 0000000	Conclusion
KCP: dat	a-driven <i>D</i> by	model select	ion	

- Notation: $Y = (Y_1, \dots, Y_n) \in \mathcal{H}^n$, $\mu^\star = (\mu_1^\star, \dots, \mu_n^\star) \in \mathcal{H}^n$
- For any $\tau \in \mathcal{T}_n$, $\Pi_{\tau} : \mathcal{H}^n \to \mathcal{H}^n$ orthogonal projection onto $F_{\tau} = \{(f_1, \dots, f_n) \in \mathcal{H}^n / f_{\tau_{\ell-1}+1} = \dots = f_{\tau_{\ell}} \, \forall \ell = 1, \dots, D_{\tau} \}$
- $\Rightarrow \text{ Least-squares estimator } \widehat{\mu}_{\tau} = \prod_{\tau} Y$ and least-squares criterion: $\widehat{\mathcal{R}}_{n}(\tau) = \frac{1}{n} \|Y - \widehat{\mu}_{\tau}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|Y_{i} - (\widehat{\mu}_{\tau})_{i}\|_{\mathcal{H}}^{2}$
 - Quadratic risk of $\mu \in \mathcal{H}^n$:

$$\mathcal{R}(\mu) = rac{1}{n} \|\mu - \mu^{\star}\|^2 = rac{1}{n} \sum_{i=1}^n \|\mu_i - \mu_i^{\star}\|_{\mathcal{H}}^2$$

• Usual approach for model selection: take a penalty such that

$$\forall \tau \in \mathcal{T}_n, \qquad \mathsf{pen}(\tau) \geqslant \mathsf{pen}_{\mathrm{id}}(\tau) := \mathcal{R}(\widehat{\mu}_{\tau}) - \widehat{\mathcal{R}}_n(\tau) + \mathsf{cst}.$$

Theorem (A., Celisse & Harchaoui, 2012–19)

Assume: \mathcal{H} separable, (**Db**), y > 0, $C \ge 119$ and

$$\forall \tau \in \mathcal{T}_n, \qquad \mathsf{pen}(\tau) \geqslant rac{CM^2}{n} \left[\log inom{n-1}{D_{\tau}-1} + D_{\tau}
ight]$$

Then, with probability $1 - e^{-y}$,

$$\begin{aligned} \forall \widehat{\tau} \in \operatorname*{argmin}_{\tau \in \mathcal{T}_n} \left\{ \widehat{\mathcal{R}}_n(\tau) + \operatorname{pen}(\tau) \right\} \,, \\ \mathcal{R}(\widehat{\mu}_{\widehat{\tau}}) \leqslant 2 \inf_{\tau \in \mathcal{T}_n} \{ \mathcal{R}(\widehat{\mu}_{\tau}) + \operatorname{pen}(\tau) \} + \frac{83yM^2}{n} \end{aligned}$$

• applies to $pen(\tau) = \frac{CM^2D_{\tau}}{n}$ if $C \ge 465 \log(n)$. • $\mathcal{X} = \mathbb{R}$, linear kernel: Birgé & Massart (2001), Lebarbier (2005). <u>16/30</u>

.

Assume: \mathcal{H} separable, (**Db**), y > 0 and

$$C_{\min} := \frac{74}{3} (D_{\tau^{\star}} + 1) (y + \log n + 1) < C < C_{\max} := \frac{\Delta^2}{M^2} \frac{\Lambda_{\tau^{\star}}}{6D_{\tau^{\star}}} n.$$

Then, with probability $1 - e^{-y}$,

$$\forall \widehat{\tau} \in \underset{\tau \in \mathcal{T}_n}{\operatorname{argmin}} \left\{ \widehat{\mathcal{R}}_n(\tau) + \frac{CM^2 D_{\tau}}{n} \right\}, \qquad D_{\widehat{\tau}} = D_{\tau^*}$$

and
$$d_{\infty,n}(\tau^*, \widehat{\tau}) \leqslant v_n(y) := \frac{148D_{\tau^*}M^2}{\underline{\Delta}^2} \cdot \frac{y + \log n + 1}{n}.$$

Previous works (Lavielle & Moulines, 2000, among many others): real case ($\mathcal{H} = \mathbb{R}$) only (with dependent data).

30

Corollary (A. & Garreau, 2018, simplified result)

Assume: \mathcal{H} separable, (**Db**) and

$$D_{ au^{\star}} \log n \lesssim C \lesssim rac{\Delta^2}{M^2} rac{\Lambda_{ au^{\star}}}{D_{ au^{\star}}} n$$
.

Then, with probability $1 - n^{-2}$,

$$\forall \hat{\tau} \in \underset{\tau \in \mathcal{T}_n}{\operatorname{argmin}} \left\{ \widehat{\mathcal{R}}_n(\tau) + \frac{CM^2 D_{\tau}}{n} \right\}, \qquad D_{\widehat{\tau}} = D_{\tau^*}$$

$$and \qquad \operatorname{d}_{\infty,n}(\tau^*, \widehat{\tau}) \lesssim \frac{D_{\tau^*} M^2}{\underline{\Delta}^2} \cdot \frac{\log n}{n} \,.$$

- $\frac{\Delta^2}{M^2} \approx$ signal-to-noise ratio.
- Lower bound on C: log(n) necessary (Birgé & Massart, 2007)_{18/30}

Introduction 00000000	$\begin{array}{l} D=D_{\tau}\star\\ 00000\end{array}$	D = D	Experiments 0000000	Conclusion
Oracle inequa	lity: proof id	eas		

• Notation:
$$\varepsilon = Y - \mu^{\star} \in \mathcal{H}^n$$

• Ideal penalty:

$$pen_{id}(\tau) := \mathcal{R}(\hat{\mu}_{\tau}) - \hat{\mathcal{R}}_{n}(\tau) + \frac{1}{n} \|\varepsilon\|^{2}$$
$$= \frac{2}{n} \underbrace{\langle \prod_{\tau} \mu^{\star} - \mu^{\star}, \varepsilon \rangle}_{= -L_{\tau}(\text{linear term})} + \underbrace{\frac{2}{n} \underbrace{\|\prod_{\tau} \varepsilon\|^{2}}_{= Q_{\tau}} \underbrace{|\prod_{\tau} \varepsilon||^{2}}_{(\text{quadratic term})}$$

- Concentration for $L_{ au}$ and $Q_{ au}$ around their expectations
- ⇒ show that $pen(\tau) \ge pen_{id}(\tau)$ simultaneously for all $\tau \in \mathcal{T}_n$, with probability $\ge 1 e^{-\gamma}$.
 - Previous work (Birgé & Massart, 2001): Gaussian assumption + real-valued functions \Rightarrow does not apply to RKHS case.

Introduction 00000000	$\begin{array}{l} D = D_{\tau} \star \\ 0 0 0 0 0 \end{array}$	D = D	Experiments 0000000	Conclusion
Concentration	of the guad	ratic term		

Proposition (A., Celisse & Harchaoui, 2012–19)

Assume: \mathcal{H} separable and (**Db**). Then, for every $\tau \in \mathcal{T}_n$, x > 0:

$$\left\| \Pi_{ au} arepsilon
ight\|^2 - \mathbb{E} \left[\left\| \Pi_{ au} arepsilon
ight\|^2
ight] \leqslant rac{14M^2}{3} (x + 2\sqrt{2x} D_{ au}) \; ,$$

with probability at least $1 - e^{-x}$.

Proof ideas:

- Pinelis-Sakhanenko's inequality $(\|\sum_{i\in\lambda}\varepsilon_i\|_{\mathcal{H}})$.
- Bernstein's inequality (upper bounding moments).

	$D = D_{\tau} \star$	D = D	Experiments	Conclusion
0000000	00000	00000000	0000000	

Concentration of the linear term

Proposition

Assume: \mathcal{H} separable and (**Db**). Then, for every $\tau \in \mathcal{T}_n$, x > 0, with probability at least $1 - 2e^{-x}$:

$$|\langle \mathsf{\Pi}_{\tau} \mu^{\star} - \mu^{\star}, \varepsilon \rangle| \leqslant \theta \, \|\mathsf{\Pi}_{\tau} \mu^{\star} - \mu^{\star}\|^{2} + \left(\frac{1}{2\theta} + \frac{4}{3}\right) M^{2} x \, ,$$

for every $\theta > 0$.

Proof: Bernstein's inequality.

Identification of change-points: proof ideas					
0000000	00000	0000000	0000000		
	$D = D_{\tau} \star$	D = D	Experiments	Conclusion	

$$\widehat{ au} \in \operatorname*{argmin}_{ au \in \mathcal{T}_n} \{ \widehat{\mathcal{R}}_n(au) + \mathsf{pen}(au) \}$$

• Empirical risk:

$$\widehat{\mathcal{R}}_{n}(\tau) = \frac{1}{n} \underbrace{\|\mu^{\star} - \Pi_{\tau}\mu^{\star}\|^{2}}_{=A_{\tau}(\text{approximation})} + \frac{2}{n} \underbrace{\langle\mu^{\star} - \Pi_{\tau}\mu^{\star}, \varepsilon\rangle}_{=L_{\tau}(\text{linear term})} - \frac{1}{n} \underbrace{\|\Pi_{\tau}\varepsilon\|^{2}}_{=Q_{\tau}} + \frac{1}{n} \underbrace{\|\varepsilon\|^{2}}_{(\text{constant})}$$

• Previous concentration inequalities for $L_{ au}, Q_{ au}$.

 \mathbf{O}

• Deterministic bounds on
$$A_{\tau}$$
:
 $D_{\tau} < D_{\tau^{\star}} \Rightarrow \frac{1}{n}A_{\tau} \ge \frac{1}{2}\underline{\Lambda}_{\tau^{\star}}\underline{\Delta}^{2}$ (for showing $D_{\widehat{\tau}} \ge D_{\tau^{\star}}$)
 $\frac{1}{n}A_{\tau} \ge \frac{1}{2}\min\left\{\underline{\Lambda}_{\tau^{\star}}, \, \mathrm{d}_{\infty,n}(\tau^{\star}, \tau)\right\}\underline{\Delta}^{2}$ (for $\widehat{\tau}(D_{\tau^{\star}})$)

Consistent change-point detection with kernels

22/30

Constant mean and variance: the distribution of X_i is chosen among $\mathcal{B}(0.5)$, $\mathcal{N}(0.5, 0.25)$ and $\mathcal{E}(0.5)$.

Linear

Hermite

Gaussian

KCP with D_{τ^*} known.

Consistent change-point detection with kernels

Gaussian kernel; KCP with \widehat{D} data-driven.

 $X_i \in d$ -dimensional simplex, Dirichlet distribution $(p_1^{\ell}, \ldots, p_d^{\ell})$ on the ℓ -th segment, with p_i^{ℓ} independent $\sim \mathcal{U}([0, 0.2])$.

26 Sylvain Arlot

30

KCP with D_{τ^*} known.

KCP with \widehat{D} data-driven.

- wave heights (A., Celisse & Harchaoui, 2012–19): distribution changes, X = ℝ
- composite biological data, DNA copy number and allele B frequencies (Celisse et al., 2018): $\mathcal{X} = \mathbb{R}^2$
- human activity recognition using smartphones data set (Garreau & A. 2018): $\mathcal{X} = \mathbb{R} \Rightarrow \mathcal{X} = \mathbb{R}^{30}$ (sliding frequency-domain representation)
- correlation changes in a multivariate time series (Cabrieto et al. 2017), application to behavioral sciences
- covariance structure changes (Cabrieto et al., 2018) with KCP on running empirical correlations, application to psychology
- autocorrelation structure changes (Cabrieto et al., 2018) with KCP on running empirical autocorellations, application to psychology

Introduction 00000000	$D = D_{\tau} \star$	$D = \widehat{D}$	Experiments 0000000	Conclusion
Conclusion				

Take-home message:

- Kernelized version of penalized least-squares change-point detection (eg, Lebarbier, 2005).
- Detection of changes in the distribution, not only the first moments.
- Can deal with structured data.
- Under reasonable assumptions and for a class of penalty functions:
 - oracle inequality;
 - identifies the correct number of change-points;
 - estimates at the correct rate the change-points locations.

Open problems:

- Unbounded data/kernel.
- Dependent data?
- Learn how to choose the kernel.

